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1. Introduction 
 

A lot of risk analyses have been performed to actually 
estimate a risk profile from both uncertain future states of 
hazard sources and undesirable scenarios. These risk 
prediction would require a systematic process for the 
scenarios. The scenario in the risk analysis can be defined 
as a propagating feature of specific initiating event which 
can go to a wide range of undesirable consequences, 
which answers to the question, “What can go wrong?”  

In terms of treating scenarios, we can classify states of 
systems with two – active and passive. First, the state of 
system is called ‘active’ if an event can be directly 
controlled according to its happening simultaneously, 
whose risk has been easily assessed using a traditional 
probabilistic risk assessment (PRA) technique. The 
operating risk from nuclear power plants is categorized 
into this case. Next, on the other hand, the state of system 
is called ‘passive’ if any event cannot be directly 
controlled according to its happening, whose risk then 
scarcely has assessed via the traditional PRA technique. 
The future risk from, for example, radioactive waste 
disposal systems will be categorized into this case. In this 
case, with natural hazards being considered, the risk 
under any of the scenarios should be estimated. 

Since the system performance in the passive state is 
very sensitive depending on a variety of scenarios, a 
temporal evolution by change in environmental 
conditions becomes a fundamental factor in estimating the 
risk. However, usually there are no direct methods of 
assuring the credibility of the evolution. In order to 
consider the effects owing to the evolution of 
environmental conditions of passive systems, this paper 
proposes a quantitative assessment framework combining 
an inference process of Bayesian network (BN) into a 
traditional risk analysis. 

 
2. BNs for the PRA of a passive system 

 
2.1. General Structuring 

 
We attempted to represent a general structure model 

for the application. Figure 1 shows a fully-specified BN 
corresponding with an actual inference problem. For the 
purpose of showing an illustration, a multiply-connected 
network with 4 query nodes is outlined. The logic in 

Figure 1 is explained in detail. In the figure, we introduce 
some random variables which can give a system response 
R following after the instantiation (it commonly means 
that a random variable becomes a true state) of triggering; 
therefore, let a random variable Xk an actual system 
performance indicator corresponding to a domain variable 
k under the dependency of initiating events. Ei in a root 
node represents the happening of an initiating event i 
which affects physical domain variables of given system. 
A random variable V denotes a trigger (a kind of filtering 
interaction) reflecting the fact that any input cannot 
always produce the output. As a descendant node is 
affected by different trigger nodes, diverse connections 
from any j-th node of V (Vj) to any k-th node of X (Xk) 
exist depending on their causal characteristics. As far as R 
from an instantiation of Xk is concerned, we may define it 
as an adverse impact on the system or any other 
consequential measure of the system. 
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Figure 1. A BN with fully treating causal relationships in PRA 
 

2.2. Approaches for a probabilistic inference 
 

The probability of each instantiation can be simply 
calculated as the product of the conditional probabilities 
of its predecessors. Therefore, we need specifying a joint 
probability distribution over all the random variables. In 
functional and logical determinations, the state values of 
the descendant node are wholly determined by the values 
of the parent nodes. 

A key point of practical reasoning is to take the 
evidence propagation by computing the answer 
probabilistically for particular queries about the domain, 



which is generally referred to as a probabilistic inference. 
Therefore, in order to obtain an adequate solution on the 
reasoning with parameter fitting, it is necessary to 
consider an appropriate probabilistic inference algorithm 
[1]. Finding a sufficient and effective inference algorithm 
in static BNs is desirable with a computing efficiency of 
simulation considered. Since general marginalization 
using joint probabilities requires exponential time in the 
probabilistic inference, we had to consider more efficient 
methods. To meet the above demands, we finally selected 
the best out of a lot of inference algorithms, i.e. likelihood 
weighting algorithm [2]. 
 

3. An example application to a passive system 
 
3.1. Characteristics of a passive system given scenarios 
 

The application involves an example for estimating 
the risk in a passive system, particularly in association 
with a radiological waste disposal repository. A basic 
mechanism governing the release in underground media 
is the mass transfer in a porous medium. After an elapse 
of a delay period, the groundwater system becomes an 
important part of pathway for radionuclide transfer. The 
degree of saturation of medium, flow of the groundwater 
system, and chemical properties of radionuclides may be 
key uncertain elements in determining the release rate. 

We introduce the concept of ‘altered evolution 
scenarios (AESs)’ here as one of extreme and special 
types of the scenarios. For convenience’ sake, AESs are 
defined as unusual happenings that can cause significant 
alteration or momentary changes of underground 
geochemical, hydrological, and/or mechanical properties 
which are directly linked with the system performance. 

 
3.2. Supporting evaluation models 
 

Instead of choosing insufficient empirical data, the 
frequency about AES likelihood is just estimated based 
on the subjective engineering judgment which uses a 
concept of categorized selection criterion. Also, we 
adopted a so-named ‘mixture prior’ concept. By 
introducing the ‘mixture prior’ we can articulate the 
effects of uncertain parameters under the occurrence of 
AESs. The ‘mixture prior’ shows a mixing status of a 
normal prior and the ‘contaminated prior’. 

First, we define an arbitrary prior set Γ to elicit a linear 
estimator of an uncertain parameter θ . Next, the priors 
π(θ ) ‘close’ to a single normal prior π0(θ ) can be 
realized with a class of possible ‘contamination’ [3]: 
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where Ψ is a class of possible ‘contamination,’ and ϕ is 
an adjustable correction factor with 0 ≤ ϕ < 1 which 
reflects how π closes to π0 . 
 

4. Results of an application 
 

Based on current knowledge of the relationship 
between domain variables and scenarios which are 
usually gathered from relevant experts, we can prepare 
specific information on the conditional probability tables 
(CPTs) used in the inference program. We had primarily 
considered the dependencies between 4 domain variables 
and 4 AESs. In preparing a simulation input for CPTs, we 
defined a dependency matrix with an ad hoc basis, where 
the dependency relationships with 4 grades – high, 
medium, low, and zero – were assumed. All the random 
variables were simulated concurrently with each AES. 
The simulation easily reached a stable state except initial 
transitions. With the acceptance of this simulation, 
therefore, we can provide the solutions of the query 
random variables depending on each AES. We also got 
some remarkable insights, acquired in the simulation 
results, on the relationship between random variables 
used in BN and various AESs. 
 

5. Conclusions 
 

Since BNs can contribute to identify the causality of 
an uncertain system’s behaviour, we introduced its 
inference process estimating the dependency between 
stochastic scenarios and affected domain variables of the 
system. A general approach combining the BN concept 
into the nuclear PRA was illustratively demonstrated. 
After simplifying the network corresponding with a 
problem-specific structure, we developed and verified an 
approximate probabilistic inference program using an 
appropriate algorithm, finally shown to be adequate in the 
verification test for clarifying the dependency 
relationships under different problem queries. 
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