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1. Introduction 

 
Fourier error analysis has been a standard technique for 

the stability and convergence analysis of linear and 

nonlinear iterative methods. Lee et al proposed new 2-

D/1-D coupling methods and demonstrated several 

advantages of the new methods by performing a Fourier 

convergence analysis of the methods as well as two 

existing methods for a fixed source problem[1]. 

We demonstrated the Fourier convergence analysis of 

one of the 2-D/1-D coupling methods applied to a neutron 

diffusion eigenvalue problem[2]. However, the technique 

in Ref. 2 cannot be used directly to analyze the 

convergence of the other 2-D/1-D coupling methods since 

some algorithm-specific features were used in our 

previous study. 

In this paper we generalized the Fourier convergence 

analysis technique proposed in Ref. 2 and analyzed the 

convergence of the 2-D/1-D coupling methods applied to 

a neutron diffusion eigenvalue problem using the 

generalized technique. 

 

2. Methods and Results 

 

The 2-D/1-D coupling methods described in Ref. 1 can 

be directly applied to eigenvalue problems. They begin 

with the axially averaged 2-D diffusion equation which 

can be written for each plane as in Eq. (1), 
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and the radially averaged 1-D diffusion equation for each 

axial mesh which can be written as in Eq. (2), 
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Method A in Ref. 1 is to evaluate the TL of the 2-D/1-D 

equations directly from the 1-D/2-D solutions. The 

effective multiplication factor can be updated by applying 

the power iteration as follow : 
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where w  is an arbitrary weighting function. 

The model problem in Ref. 2 was used to analyze the 

convergence of method A applied to an eigenvalue 

problem. The model problem is a 3-D one-group diffusion 

eigenvalue problem in a homogeneous finite multiplying 

medium of N  planes with periodic boundary conditions. 

It is obvious that the exact solution to the model problem 

is 
0φφ =  and ΣΣ== ∞ feff kk ν . Two basic assumptions 

are introduced in order to simplify the convergence 

analysis. These are (1) solving the 2-D problems plane by 

plane, which means solving them iteratively in the z-

direction and (2) solving the 2-D problem by a direct 

inversion of the 2-D operator in a given plane. The second 

assumption leads to a zero radial leakage during the 

iterations, and simplifies Eqs (1) and (2) to:  
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The iterative algorithm of method A applied to the 

eigenvalue problem with one inner iteration per outer 

iteration can be expressed by the following equations : 

( ))1(

,

)1(

1,

)1(

)1(

)( 11 −−
+

−
− −−Σ=Σ n

kz

n

kz

n

kfn

eff

n

k JJ
hk

φνφ ,     (5a) 

∑∑ −−=
'

)1(

'

'

)(

'

)1()(

k

n

k

k

n

k

n

eff

n

eff kk φφ ,                   (5b) 

( ))(

1

)()()(

,

n

k

n

k

nn

kz AJ −−−= φφ ,                       (5c) 

where 
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Note that the two-node analytic nodal method was used to 

solve the axial 1-D equation and also that a constant 

weighting function was used to get Eq. (5b).  

As we did in the fixed source problem, let’s introduce 

a first order perturbation of ( )n

kφ , )(n

effk , and )(nA  in Eq. (5). 
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Note that )(nδ  and )(nθ  as well as )(n

effk  and )(nA  are 

independent of the mesh index k . 

Inserting Eq. (6) into Eq. (5) and dropping the ( )2εO  

terms yields the following linearized equation : 
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Note that )(nθ  disappeared in the linearized equation. 

There are only N  independent bases for the flux 

vector because the dimension of the flux vector is N . We 

can choose the N  eigenvectors from the lowest mode as 

the basis. The flux can be expanded by the N  

eigenvectors, xi me
λ ( )1,,1,0 −= Nm Λ , corresponding to the 

eigenmodes ( )2m m Nhλ π= which satisfy the periodic 

boundary conditions of the model problem. Therefore, we 

can introduce the following Fourier ansatz : 
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Note that only some discrete values of the wave 

number,
mλ , are allowed in Eq. (8) whereas a continuous 

wave number is allowed in the fixed source problem. 

Among the eigenmodes, 00 =λ  forms the fundamental 

mode solution of the flux, )(

0,1 n

kξ+  for the model problem, 

and the other modes, ( )1,,2,1 −= Nmm Λλ , form the 

higher mode error term of the flux, )(

,

n

mkξ . As indicated 

above, )(nδ  is independent of the space, which means that 

only 00 =λ  is allowed for the wave number of the Fourier 

ansatz of )(nδ . 

It is trivial to show that 
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Using Eq. (9), we can simply Eq. (7) for 0>m  : 

( )( )( ) ( 1) 2 2 ( 1) ( 1) ( 1)

, , 1, , 1,2n n n n n

k m k m k m k m k mL hξ ξ ξ ξ ξ− − − −
− += + − + .   (10) 

We can also simplify Eq. (7) for 0=m  : 
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From Eq. (10) and (11), we get 

00 =ω ,                                  (12a) 

( ) ( ) ( )2 21 2 cos 1 0m mL h mω τ = + − >  .    (12b) 

Note that hmm λτ =  are Nπ2 , Nπ4 , Λ , ( ) NN π12 − . 

The spectral radius of the linearized algorithm of 

method A for the eigenvalue problem is given by : 
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One can directly apply the Fourier convergence analysis 

demonstrated above to the other 2-D/1-D coupling 

methods. Figure 1 shows the spectral radius of the 2-D/1-

D coupling methods as a function of the axial mesh size 

for the model problem with 4N = , 833333.0=D , 

0.02Σ = , and 019.0=Σ fν . The line is the analytic 

spectral radius obtained by the Fourier analysis and the 

dots are the numerical ones. The large gray dots are used 

for method D to distinguish them from those for method C. 

As indicated, a good agreement is observed between the 

analytic and numerical results. As we expected, we got the 

same result as that in Ref. 2 for method A. Though 

method A is the best in terms of a spectral radius for a 

large mesh size, it diverges for a small mesh size. The 

other methods are always stable regardless of the axial 

mesh size. The spectral radius of methods C and D are 

smaller than that of method B in the range of a practical 

mesh size. The spectral radius of methods C and D are 

identical while that of D is smaller than that of C in a 

fixed source problem[1]. It is interesting that the spectral 

radius in the eigenvalue problem approaches 1 as the 

mesh size increases while it approaches zero in the fixed 

source problem. 
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Figure 1. The spectral radius of 2-D/1-D coupling methods 

 

3. Conclusion 

 

In this paper we generalized the Fourier convergence 

analysis technique proposed in Ref. 2 and analyzed the 

convergence of the 2-D/1-D coupling methods applied to 

a neutron diffusion eigenvalue problem using the 

generalized technique. The analysis showed that the newly 

proposed methods, C and D, are better than the existing 

methods, A and B, even for the eigenvalue problems. 
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