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1. Introduction

Fourier error analysis has been a standard technique for
the stability and convergence analysis of linear and
nonlinear iterative methods. Lee et al proposed new 2-
D/1-D coupling methods and demonstrated several
advantages of the new methods by performing a Fourier
convergence analysis of the methods as well as two
existing methods for a fixed source problem[1].

We demonstrated the Fourier convergence analysis of
one of the 2-D/1-D coupling methods applied to a neutron
diffusion eigenvalue problem[2]. However, the technique
in Ref. 2 cannot be used directly to analyze the
convergence of the other 2-D/1-D coupling methods since
some algorithm-specific features were used in our
previous study.

In this paper we generalized the Fourier convergence
analysis technique proposed in Ref. 2 and analyzed the
convergence of the 2-D/1-D coupling methods applied to
a neutron diffusion eigenvalue problem using the
generalized technique.

2. Methods and Results

The 2-D/1-D coupling methods described in Ref. 1 can
be directly applied to eigenvalue problems. They begin
with the axially averaged 2-D diffusion equation which
can be written for each plane as in Eq. (1),
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and the radially averaged 1-D diffusion equation for each
axial mesh which can be written as in Eq. (2),
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Method A in Ref. 1 is to evaluate the TL of the 2-D/1-D
equations directly from the 1-D/2-D solutions. The

effective multiplication factor can be updated by applying
the power iteration as follow :
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where W is an arbitrary weighting function.

The model problem in Ref. 2 was used to analyze the
convergence of method A applied to an eigenvalue
problem. The model problem is a 3-D one-group diffusion

eigenvalue problem in a homogeneous finite multiplying
medium of N planes with periodic boundary conditions.
It is obvious that the exact solution to the model problem
is ¢ = b and k@_f/- =k, = VZ, /2 . Two basic assumptions

are introduced in order to simplify the convergence
analysis. These are (1) solving the 2-D problems plane by
plane, which means solving them iteratively in the z-
direction and (2) solving the 2-D problem by a direct
inversion of the 2-D operator in a given plane. The second
assumption leads to a zero radial leakage during the
iterations, and simplifies Eqs (1) and (2) to:
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The iterative algorithm of method A applied to the
eigenvalue problem with one inner iteration per outer
iteration can be expressed by the following equations :
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Note that the two-node analytic nodal method was used to
solve the axial 1-D equation and also that a constant
weighting function was used to get Eq. (5b).

As we did in the fixed source problem, let’s introduce
a first order perturbation of ¢, k<”,> and 4™ in Eq. (5).
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Note that §® and g™ as well as k) and 4™ are
independent of the mesh index £k .
Inserting Eq. (6) into Eq. (5) and dropping the 0(52)
terms yields the following linearized equation :
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Note that g disappeared in the linearized equation.

There are only N independent bases for the flux
vector because the dimension of the flux vector is N . We
can choose the N eigenvectors from the lowest mode as
the basis. The flux can be expanded by the N
eigenvectors, ¢’ (m =0,1,A , N —1), corresponding to the
eigenmodes A, zzm;;/( Nh) which satisfy the periodic
boundary conditions of the model problem. Therefore, we

can introduce the following Fourier ansatz :
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Note that only some discrete values of the wave
number, 4 , are allowed in Eq. (8) whereas a continuous

wave number is allowed in the fixed source problem.
Among the eigenmodes, 2 =0 forms the fundamental

mode solution of the flux, 1+ £m for the model problem,
2, (m=12,A ,N-1),
higher mode error term of the flux, 52"”)1. As indicated

and the other modes, form the

above, § is independent of the space, which means that
only 2, =0 is allowed for the wave number of the Fourier

ansatz of 5™ .
It is trivial to show that

z (") —
Using Eq. (9) we can simply Eq. (7) for m >0 :
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We can also simplify Eq. (7) for m=0 :
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From Eq. (10) and (11), we get
w, =0, (12a)

o, =1+2(L /1 )[cos(z,)~1] (m>0). (12b)
Note that 7, = 4 & are 2z/N, 4z/N. n , 2(N-1)z/N .

The spectral radius of the linearized algorithm of
method A for the eigenvalue problem is given by :
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One can directly apply the Fourier convergence analysis
demonstrated above to the other 2-D/1-D coupling
methods. Figure 1 shows the spectral radius of the 2-D/1-
D coupling methods as a function of the axial mesh size
for the model problem with N=4 , D=0.833333,

£=0.02, and VvE, =0.019 - The line is the analytic

spectral radius obtained by the Fourier analysis and the
dots are the numerical ones. The large gray dots are used
for method D to distinguish them from those for method C.
As indicated, a good agreement is observed between the
analytic and numerical results. As we expected, we got the
same result as that in Ref. 2 for method A. Though
method A is the best in terms of a spectral radius for a
large mesh size, it diverges for a small mesh size. The
other methods are always stable regardless of the axial
mesh size. The spectral radius of methods C and D are
smaller than that of method B in the range of a practical
mesh size. The spectral radius of methods C and D are
identical while that of D is smaller than that of C in a
fixed source problem[1]. It is interesting that the spectral
radius in the eigenvalue problem approaches 1 as the
mesh size increases while it approaches zero in the fixed
source problem.
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Figure 1. The spectral radius of 2-D/1-D coupling methods
3. Conclusion

In this paper we generalized the Fourier convergence
analysis technique proposed in Ref. 2 and analyzed the
convergence of the 2-D/1-D coupling methods applied to
a neutron diffusion eigenvalue problem using the
generalized technique. The analysis showed that the newly
proposed methods, C and D, are better than the existing
methods, A and B, even for the eigenvalue problems.
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