
A

BC

Logical Loop Breaking Method in Fault Tree Analysis
Woo Sik Jung, Joon-Eon Yang, Jaejoo Ha

Korea Atomic Energy Research Institute, P.O.Box 105, Yusong, Daejon, Korea, woosjung@kaeri.re.kr

1. Introduction
Logical loops or circular logics are interpreted as

circular supporting relations among systems or their fault
trees [1-4]. The logical loops could be found by
examining the supporting relations among the systems
before developing their fault trees. The merged fault tree
is created by combining the system fault trees. The logical
loop in a merged fault tree exists in a shape of a circular
connection of gates.

There are two ways to break logical loops such as the

analytical [5-9] and manual breaking methods [1-4].
Guidance for the manual breaking of the logical loops is
provided in NUREG/CR-2728 [1]. ASME probabilistic
risk assessment standard [5] recommends that a
significant conservatism or non-conservatism be avoided
when breaking the logical loops.

Yang [6] presented an analytical method to break the

logical loops. By using the analytical method [6], KIRAP
[7] and FTREX [8,9] recursively search and break the
logical loops in a fault tree and then solve the broken fault
tree.

2. Analytical Method

The analytical method to break logical loops was
presented by Yang [6]. The example in Fig. 1 is provided
as an illustration of the analytical logical-loop breaking
method. In this example, the circular relations are
represented by the following Boolean equations.

.BCACCC
CBBB
BAAA

bac

cb

ba

++=
+=
+=

(1)

Fig.1 Example of logical loop

The fault tree in Fig. 1 has 3 combinations that cause
the logical loops such as A<B<C<A, B<C<B, and
C<B<C. The fault tree is expanded in a top-down way.
During the expansion, the combinations of events are
examined and the combinations that cause the logical
loops are deleted as follows:

ccbbba

bcbacbccbbba

baccbbba

cbba

CBABAA

BCBAACBACBABAA
BCACCBABAA

CBBAAA

++=

++++=
++++=

++=
)(

)(
 (2)

The underlined 2 combinations in Eq. (2) cause the
logical loops. The combinations AbBcCaA and AbBcCaB
are instances of the logical loops A<B<C<A and B<C<B
respectively. The underlined 2 combinations are deleted.

The analytical solution at the system level could be

obtained without an actual manipulation of the fault
trees[10]. The manual operation of the fault trees in the
analytical solution is performed, and then the broken fault
tree is solved by any fault tree quantifier. Let us consider
the example in Fig. 1 as

.),(
)(
)(

BCACCCBAfC
CBBBCfB
BAAABfA

bac

cb

ba

++=→=

+=→=

+=→=
 (3)

In this case, the independent fault trees are
.,, baccbba CCCCBBBAAA ++=+=+= (4)

If A<B<C<A is found, then the following solution is
obtained

11

111

1

)(
/)(

),/(),(

BAAABfA
CBBABCfB

CBACBAfC

ba

cb

c

+=→=

+=→=

=→=
. (5)

The logical structure in Eq. (5) is identical to the one in
Eq. (2).

3. Background of the analytical solution

When a logical loop among several systems X<Y<Z<
…<X is arranged for the system X , the Boolean equation
becomes
 X = a + bX (6)
where X, Y, and Z are systems or Boolean equations such
as system functions or fault trees. It has a general solution
 X = a + bG (7)
where G is an arbitrary Boolean equation.

The solutions of a system function X are Prime
Implicants (PIs) or minimal cut sets (MCSs). The type of
solutions and the necessary method are determined by the
reliability analyst. By the definitions of PIs and MCSs,
the system function should be TRUE (Ω), when making
all the elements of a solution TRUE.

The solutions are generated from the two terms a and

bG. When making all the elements in one PI or MCS of a
TRUE, a and the system function in Eq. (6) become
TRUE as

 X = Ω + X = Ω . (8)
Although each solution of bG can make b and G TRUE, it
can not make Eq. (6) TRUE. That is, the state of X is still
indefinite as

Transactions of the Korean Nuclear Society Autumn Meeting
Busan, Korea, October 27-28, 2005

 X = a + X . (9)
Thus, the solutions of bG can not make the system
function in Eq. (6) TRUE. In order for all the solutions
from Eq. (7) to satisfy the basic definitions of the
solutions in the fault tree analysis, the general solution in
Eq. (7) should be reduced to
 aX = . (10)

4. Procedure for breaking logical loops
After integrating the fault trees of the supporting

systems, the logical loops in the fault tree should be
carefully examined. In this study, the logical loops are
categorized into three types as follows:

1. Type A logical loops are nonsense logical loops. The

logical loops should be manually fixed.
2. Type B logical loops are nonsense logical loops.

 bXaX += → aX = (11)
3. Type C logical loops are proper logical loops.

 bXaX += → aX = (12)

The type B and C logical loops could be broken

together since they have the same resultant formula. In
this study the following procedures are recommended:

1. Find logical loops and determine their types
2. Manually delete Type A logical loops
3. Manually break Type B and C logical loops. It is

recommended to use dedicated computational tools
such as KIRAP or FTREX to automatically break the
logical loops.

4. Solve the broken fault tree.

A typical example of Type A logical loop is in Ref. 4.
In order to illustrate Type A logical loop and the breaking
procedure in Step 2, let us consider the failure to start of
the diesel generator in the case of a station black out
(SBO) condition as

DG failure to start = c + d × 125V DC failure (13)
125V DC failure = e +
Battery failure × Battery charger failure (14)

The logics in Eqs. (13) and (14) generate Type A logical
loop on the Battery charger failure (X)

X = a + Battery failure × X (15)
Since there is no available offsite and onsite power when
the diesel generator is starting, battery charger failure is
trimmed away from the Boolean equations in Eq. (14) as

DG failure to start = c + d × (e + Battery failure) (16)

FTREX[9] has a reporting capability of logical loops.
The logical loop information of the latest Ulchin 3/4 NPP
core damage fault tree is summarized in Table 1. The

fault tree is developed for the input to the risk monitor
based on the PSA study [11].

Table 1. Logical loops KSNP PSA

X that has a logical loop structure X=a+bX
Type A:
Battery charger failure (X) and Battery failure (b) in SBO
Type B or C:
Component cooling water pumps 1A (X) and 2A (b)
Emergency diesel generators 1A/1B (X) and AAC (b)

17

X that has a logical loop structure X=A+X 46
Number of logical loops 2,650

5. Conclusion

In this study, the analytical method and its background
to break logical loops are explained. Furthermore, the
procedure for breaking logical loops is presented. A
careful attention should be paid to the manual breaking of
the logical loops, since it is a very complicated task.
Therefore, it is recommended to use dedicated
computational tools such as KIRAP or FTREX to
automatically break the logical loops.

REFERENCES
[1] D.D. Carlson, Interim Reliability Evaluation Program
Procedure Guide, NUREG/CR-2728, SAND82-1100, U.S.
Nuclear Regulatory Commission, Washington, DC, 1983.
[2] G.A. Coles, Powers TB, “Breaking the Logic Loop to
Complete the Probabilistic Risk Assessment,” Proceeding of
PSA 89: International Topical Meeting Probability, Reliability,
and Safety Assessment, pp.1155-1160, Pennsylvania, USA,
1989.
[3] D.I. Kang, Hwang MJ, Yang JE, Jin YH, Shapiro HS,
“Breaking the Complex Logical Loops in Wolsong 2/3/4 PSA,”
PSA '95, Seoul, Korea, 1995.
[4] M. Demichela, N. Piccinini, I. Ciarambino, S. Contini, “How
to Avoid the Generation of Logic Loops in the Construction of
Fault Trees,” Reliability Engineering and Safety, Vol. 84, pp.
197-207, 2004.
[5] ASME, “Standard for Probabilistic Risk Assessment for
Nuclear Power Plant Applications,” ASME RS-S-2002, 2002.
[6] J.E. Yang, S.H. Han, J.H. Park, Y.H. Jin, “Analytic Method
to Break Logical Loops Automatically in PSA,” Reliability
Engineering and Safety, Vol. 56, pp. 101-105, 1997.
[7] S.H. Han, “PC-workstation based level 1 PRA code
package-KIRAP," Reliability Engineering and System Safety,
Vol. 30, pp.313-322, 1990.
[8] W.S. Jung, S.H. Han, J.J. Ha, “A Fast BDD Algorithm for
Large Coherent Fault Trees Analysis,” Reliability Engineering
and System Safety, Vol. 83, pp. 369–374, 2004.
[9] W.S. Jung, S.H. Han, J.J. Ha, “Development of an Efficient
BDD Algorithm to Solve Large Fault Trees,” Proceedings of the
7th International Conference on Probabilistic Safety Assessment
and Management, June, Berlin, Germany, 2004.
[10] W.S. Jung, S.H. Han, "Development of an analytical
method to break logical loops at the system level," Reliability
Engineering and System Safety, Vol. 90, pp. 37-44, 2005.
[11] Korea Electric Power Corporation. Ulchin Units 3 and 4
Final Probabilistic Safety Assessment Report, 1997.

	분과별 논제 및 발표자	

분과별 논제 및 발표자	1
