Investigation of a Possible ZrCo Disproportionation under the SDS Bed Operating Conditions

Myung-Hwa Shim,a Hongsuk Chung[†],d Seungwoo Paek,d Chang-Shuk Kim,b Minsoo Lee,d Kwang-Rag Kim,d Sung-Paal Yim,d Do-Hee Ahn,d Hiroshi Yoshida,c a University of Science & Technology, 52 Eoeun-dong, Yuseong-gu, Daejeon, 305-333 Korea b ITER Project TFT, 52 Eoeun-dong, Yuseong-gu, Daejeon, 305-333 Korea

c ITER Tritium Plant Consultant, 3288-10, Sakado-cyo, Mito-shi, Ibakaki-ken, Japan

d Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 Korea

hschung1@kaeri.re.kr

1. Introduction

In the ITER (international thermal experimental reactor), the KAERI has full responsibility for the R&D of SDS beds. ZrCo was selected as the ITER reference material for the metal hydride storage beds. The disproportionation reaction of ZrCoHx has been reported to occur at a high temperature (>=400°C) and a high hydrogen pressure (more than equilibrium pressure) with the (1)-(2) equations [1-3].

 $2ZrCoHx \rightarrow ZrH_2 + ZrCo_2$

(1) $2ZrCoHx \rightarrow ZrH_2 + ZrCo_2 + 2(x-1)H_2$ (x>1) (2)

 $2ZrCoHx + 2(1-x)H_2 \rightarrow ZrH_2 + ZrCo_2$ (x<1) (3)

ZrCo disproportionation rate at a temperature lower than 400°C was extremely slow [3]. Also, a disproportionation was not observed in pressure lower than the equilibrium pressure because a dehydriding reaction of the (4) equation is much faster than the disproportionation reaction [3].

$$2ZrCoHx \rightarrow ZrCo + x/2H_2$$
 (4)

Disproportionated ZrCo was completely regenerated to ZrCo at 500°C under a vacuum pumping and the hydriding capacity was the same as the ZrCo before the disproportionation [3].

Disproportionation characteristics of ZrCo were examined at a higher temperature (400-450°C) [1-3]. For the delivery of the ZrCo SDS bed, the maximum temperature is 350°C (250-350°C) under a vacuum pumping without a disproportionation. In order to determine the optimum SDS operating temperatures, a disproportionation of ZrCo should be carefully examined. In the present study, a ZrCo disproportionation was examined at temperatures (< 400oC) to be applied to the SDS/LTS beds.

2. Experimental

The experimental apparatus used for the present study has been reported by S. Paek et al. [4]. The temperature of the reactor was measured by a K-type thermocouple attached onto the outer surface of the reactor. Hydrogen gas pressures were measured by MKS Signals of the thermocouple Baratoron. and pressure/vacuum gauges were continuously monitored using the Labview software.

ZrCo chunks (SAES Getters Milano, 60.8wt% Zr, 39.2wt% Co, 1-2mm thickness and 10-15mm width) were placed in a vertical cylinder(ID=13mm, t=2mm, h=330mm). High purity hydrogen (99.999%) gas was used after passing it through moisture and oxygen traps. ZrCo was reacted with the hydrogen ingressed through a 2µm porous stainless steel filter on the top of the reactor. This reactor was heated by an electric furnace and a PID programmable controller controlled the temperature.

For the evaluation of a disproportionation at 375°C, 0.9g ZrCo chunks was activated by three repetition of hydriding and dehydriding (Table 1). ZrCo was hydrided to $ZrCoH_{2.5}$ (Table 2) . In the closed volume (164.4cm³), the reactor was heated to 375°C and the pressure change was examined.

Table 1. Activation of 0.9g ZrCo chunks				
pretreatment	At 400°C, under TMP pumping			
	for 2 hours			
Hydriding 1	$[H_2]$ initial = 785torr(30H/ZrCo),			
	at 100°C			
Hydriding 2	$[H_2]$ initial = 785torr(30H/ZrCo),			
	At room temperature			
Hydriding 3	Same to hydriding 2			
Three	At 350°C, under rotary pumping,			
dehydridings	For 1.5-2 hours			
Table 2. Hydriding and disproportionation				
** 1.11	$[H_2]$ initial = 1036torr(2.5H/ZrCo)			
Hydriding	At room temperature			
	375°C/30min, 375°C for 5 days in the			
disproportionation	closed volume(164.4cm ³)			

3. Disproportionation of ZrCo

Disproportionation kinetics of ZrCo can be explained by the Avrami-Erofeev equation [3].

 $6 = 1 - \exp\{-(t/\tau)^n\}$ (5)

6 represents the ratio of the disproportionation estimated for the pressure change by reaction (2) and (3). τ means the time of a 63.2% disproportionation and t is the time.

Under 1000torr of hydrogen of 400°C, ZrCo disproportionation started at about 25 hours and a 63.3% disproportionation occurred after 83.3 hours [3]. The disproportionations at 200-400°C can be interpolated at 1000torr hydrogen under the conditions shown in Figure 1-2 and Table 3. In the

case of the ITER SDS operation at delivery for 8hr/day, 10% ZrCo disproportionation was expected after 30.9 days at 350°C and after 237.8 days at 300°C under 1000torr hydrogen. In the ITER SDS operation, ZrCo will be preheated to 250-300°C before shots and supplied to the SDS reservoir at 300-350°C under a vacuum pumping. So, the expected disproportionationed ZrCo should be regenerated at 500°C under a vacuum pumping periodically two times per year.

Figure 2. Expected disproportionation at 300, 350, 400° C under 1000torr H₂ started from ZrCo

Table 3. Interpolated and Expected disproportionation under 1000torr H₂ started from ZrCo

Temperature	10% dis*	10% dis**	63.2% dis***
250°C	1828.7 days	609.6 days	1290.6 days
300°C	237.8 days	76.3 days	167.8 days
350°C	31.7 days	10.3 days	21.8 days
375°C	11.15 days	3.72 days	7.9 days
400°C	4.92 days	1.64 days	3.5 days

 $10\%~dis^*:10\%~disproportionation$ for 8hours/day in ITER operation $10\%~dis^{**}:10\%~disproportionation$

63.2% dis***: 63.2% disproportionation

Experimental disproportionation at 375° C was examined in Figure 3(Table 2) and compared to the interpolated and expected disproportionation in Figure 4. Disproportionation started after 2 days. 10% and 63% disproportionations occurred after 2.64days and 4.82days respectively. From this experiment, ZrCoH_{1.35} was disproportionated to ZrCoH_{1.11} by the (2) equation. In a closed volume, the pressure increased from 395.5torr to 466.8torr at room temperature.

The pressure of ZrCoHx increased from 853.9torr to 1010.6 torr. At 375°C, the experimental disproportionation rate was faster than the interpolated disproportionation under 1000torr H_2 started from ZrCo.

Figure 4. Comparison of experimental and expected disproportionations at 375°C

4. Conclusion

From this result, ZrCoQx(Q=H, D, T) should be delivered under a pumping at $<350^{\circ}C$. In a closed volume, the temperature of ZrCoQx should be below $300^{\circ}C$. The present study is on going to investigate the

disproportionation rate at lower temperatures (250-350°C) to determine the optimal operating conditions of the SDS and LTS to avoid a ZrCo disproportionation for successful SDS and LTS operation.

Acknowledgement

This project has been carried out under the Basic Research Program by MOST.

REFERENCES

[1] Satoshi Konishi, T. Nagasaki, T. Hayashi, K. Okuno, Improvements in ZrCo Based Tritium Storage Media, Fusion Technology, vol 26, 668-672, 1994

[2] Kuniaki Watanabe, Masanori Hara, Masao Matsuyama, Isao Kanesaka and Toshiki Kabutomori, Stability of ZrCo and ZrNi to Heat Cycles in Hydrogen Atmosphere, Fusion technology, vol 28, 1437-1442, 1995

[3] S. Konishi, T. Nagasaki, K. Okuno, Reversible Disproportionation of ZrCo under high temperature and hydrogen pressure, J. N. M., 223 294-299, 1995

[4] Paek, S., Ahn, D. H., Kim, K. R. and Chung, H., Properties of Titanium Sponge Bed for Tritium Storage, Fusion Sci. Tech, 41(3), 788-792, 2002