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1. Introduction 
 
There is strong desire of making available high 

fidelity nodal codes in cylindrical (r,θ,z) geometry for 
pebble bed reactors[1]. The analytic function expansion 
nodal (AFEN) method developed quite extensively in 
Cartesian (x, y, z) geometry and in hexagonal-z 
geometry is a unique nodal method in that it does not 
use transverse integration[2]. Kim and Cho[3] 
developed an AFEN method in (r,z) coordinates. 
Recently, Cho et al[4, 5] extended the AFEN method to 
fully three-dimensional (r,θ,z) geometry. This paper 
provides further results, verifying the AFEN method in 
this unusual geometry for conventional nodal methods. 
 

2. Basic Theory and Method 
 
Assume that the core in (r,θ,z) geometry is 

discretized into r zN N Nθ× ×  nodes, where ,  ,rN Nθ  
and zN  are the numbers of divisions in radial, 
azimuthal, and axial directions, respectively. The AFEN 
formulation in the (r,θ,z) coordinates system starts from 
the following two-group diffusion equations in a 
homogenized node : 
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All the notations are standard. The equations can be 
decoupled as follows: 
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A general solution to Eq. (2)  can be represented in 
terms of analytic basis functions that can be obtained 
using the method of separation of variables. For 
practical implementation, we choose the modal solution 

µξ  of a node expressed in a finite number of terms. 
 

2.1. Outer Nodes 
 
    We use the following expression for an outer node: 
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where | |µ µκ λ= , and other notations are defined in 

Ref.[4]. 
 

Note that each term in Eq. (3) is an analytic solution 
of Eq. (2). The thirteen coefficients in Eq. (3) are made 
to correspond to the thirteen nodal unknowns for a 
node : i) one node average flux, and ii) twelve half-
interface average fluxes (two half-interface average 
fluxes for each of the six surfaces). 
 
2.2. Innermost Nodes 
 

In an innermost node, the inner radial surface 
degenerates (disappears) into the z-axis and thus less 
nodal unknowns may be necessary. In addition, usually 
the innermost nodes are smaller in size. Moreover, 
some of the terms in Eq. (3) render the solution 
unbounded at r=0. Therefore, the terms that involve 

0 1( ),  ( )G r G rµ µκ κ , and ln( )r are excluded. The remaining 
seven coefficients are then made to correspond to : i) 
one node average flux, ii) two half-interface average 
fluxes on the outer radial surface, and iii) four surface 
average fluxes on the other surfaces. 
 

3. Implementation in the TOPS Code 
 

After the coefficients in Eq. (3) are expressed in 
terms of the nodal unknowns, we build as many 
solvable nodal coupling equations as the number of 
these nodal unknowns to be determined. The nodal 
coupling equations in AFEN typically consist of the 
nodal balance equation, two half-interface current 
continuity equations. A computer code called TOPS has 
been developed implementing the method described 
above. 
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4. Results and Discussion 

The (r,θ,z) geometry nodal code TOPS was tested on 
two test problems. The first test problem is the Dodd’s 
Problem[6] and shown in Fig. 1. Although it is an (r,z) 
problem since the properties are constant in θ-direction, 
it is solved by TOPS and by the method in Ref.[3]. 
Table I shows the results on keff. The results by TOPS 
are practically identical to the result obtained by the 
method in Ref.[3] (that was verified by VENTURE), 
indicating that the TOPS code is working correctly. We 
further confirmed that the nodal flux distributions are 
also in excellent agreement. 

 

 
Fig. 1  Test Problem I 

 
 

Table I. The results of keff  for Test Problem I 
 keff Discrepancy (%)

Method of Ref. 3 0.8671886 Reference 
Nθ = 4 0.8671886 0.0000 
Nθ = 8 0.8671886 0.0000 
Nθ = 12 0.8671886 0.0000 
Nθ = 16 0.8671886 0.0000 

 
The second test problems is a contrived one such that 

the region-wise properties are varied azimuthally, 
rendering the problem fully three-dimensional. Fig. 2 
shows the configuration: Fig. 2(a) for a side view of 
quadrant I and III, and Fig. 2(b) for a side view of 
quadrant II and IV. Table II shows that the TOPS 
results are in excellent agreement with the VENTURE 
result. 

 
Table II. The results of keff  for Test Problem II 

 keff Discrepancy (%)
VENTURE a) 0.8449221 Reference 

Nθ =16 b) 0.8454172 0.0585 
Nθ =24 c) 0.8449914 0.0082 

a) 240 48 560× × ( r zN N Nθ× × ) 
b) 6 16 14× × ( r zN N Nθ× × ) 

c) 12 24 28× × ( r zN N Nθ× × ) 

 
(a)                                 (b) 

 

Fig. 2  Test Problem II 
 
We conclude from the results of this paper that the 

AFEN method provides correct nodal solutions in 
(r,θ,z)  geometry. We note that this unusual geometry 
has defied the efficacy of the usual (transverse 
integrated) nodal methods[5].  
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