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1. Introduction 

 

Radiative heat transfer (RHT) can be a major mode 

of heat transfer in a high temperature gas-cooled reactor 

(GCR) especially under accident conditions.   

For several decades, many methods have been 

developed for solving the RHT. These are grouped into 

two parts depending on the participation of a medium. 

The view-factor and ray-tracing models are mainly used 

for a surface-to-surface radiation. P-N, DOM, and finite 

volume (FV) methods are usually used for absorbing 

and emitting media. The surface-to-surface radiation 

models have been used for a GCR because the helium 

and air used as a coolant in the reactor core or reactor 

cavity cooling system are non-participating media. But 

these methods have a limitation in applying to general 

CFD meshes because of the resulting large matrix size. 

In this study, FV radiative transfer equation (RTE) 

model is adopted and a RHT module for the LILAC [1] 

CFD code has been developed because it is independent 

on the optical thickness of the medium. And it is 

validated by solving some benchmark problems. 

 

2. Numerical model 

 

The RTE for a gray absorbing, emitting and 

scattering medium in a direction ŝ  may be written as [2] 
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where B is the intensity gain from emission and in-

scattering in all directions. 

∫ Ω′′Φ+=

π
π

σ

4

)ˆ,ˆ()ˆ,(
4

)ˆ( dsssrIkIsB s
B

r
            (2) 

Here k is the absorption coefficient, 
sσ is the scattering 

coefficient, 
BI  is the black-body intensity and Φ  is the 

scattering phase function. On gray-diffuse surfaces, the 

boundary intensity is given by eq. (3).  
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The energy added to the medium by the radiation, which 

acts as a source in the energy equation, is given as: 
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Following the standard finite volume procedure, eq. (1) 

is integrated over finite volume and finite angle [3]. 
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Applying the divergence theorem, left-hand side of eq.  

(5) results in surface integral, and is finally discretized 

by using the 1-point quadrature as shown in eq. (6). 
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The right-hand side of eq. (5), which represents the 

attenuation and augmentation of the radiative intensity,   

is simplified as shown in eq. (7).  
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Eq. (7) is the finite volume representation of the RTE 

which describes the conservation of the radiative energy 

in each control volume and control angle. Here, 
ifI  is 

the intensity associated with the direction i at the face f 

of the control volume, and 
0i

I  is the intensity at the cell 

C0 in the direction i. By using the standard step 

approximation [4], the face intensity is defined as the 

value of the upwind cell. 
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In order to solve the eq. (7), it is necessary to discretize 

the spatial domain and the angular space. The spatial 

domain is discretized with arbitrary shaped cells, and 

the angular space 4π is discretized into non-overlapping 

control angles. The discretized RTE of eq. (7) is solved 

using a conjugate-gradient iterative matrix solver for 

each discrete control angle. 

 

3. Numerical Results 

 

Based on the numerical method describe above, a 

radiative heat transfer module of the LILAC CFD code  

has been developed. To investigate the accuracy and 

computing efficiency of the module, three benchmark 

problems have been chosen and solved.  
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Fig. 1 3-D mesh for the idealized furnace 

 

The first benchmark problem is 3-D idealized furnace 

proposed by Menguc et al. [5]. Fig. 1 depicts the 

computational domain and the generated surface mesh. 

The furnace is filled with a gray gas with k=0.5 and σ=0. 

The RTE is coupled with the energy equation with a 
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heat source of 5kW/m
3
. The wall temperatures at z=0 

and z=4 are 1200K and 400K. And all the other walls 

have temperature 400K. Fig. 2 shows the temperature 

distributions at y=1m, The results are in good agreement 

with the zone solution of Menguc and Viskanta. 
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Fig. 2 Comparison of temperature distributions at y=1.0 

location for the idealized furnace 

 

The second problem chosen for the validation of the 

numerical model is the prediction of surface heat 

transfer in a square enclosure with cold walls (at 0 K), 

which contains a non-scattering emitting gas at uniform 

temperature Tg. The exact radiative heat flux on the wall 

of the square cavity is described in the ref [3] and used 

for a comparison with present results. In this study, 

uniform and non-uniformly generated grids are used to 

check the grid dependency, as shown in Fig. 3. The 

calculated local heat flux on the bottom wall is plotted 

in Fig. 4 and 5 for the cases of weakly emitting (kL=0.1)  

and strongly emitting (kL=10) media. The figures 

depicts that the current model predicts well the radiative 

heat transfer. 

 

(a) (b) 
Fig. 3 2-D black enclosure with emitting medium, (a) uniform 

mesh, (b) non-uniform mesh  
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Fig. 4 Heat flux distributions on the bottom wall of the black 

enclosure for an optically thin case (kL=0.1) 
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Fig. 5 Heat flux distributions on the bottom wall of the black 

enclosure for an optically thick case (kL=10.0) 

 

The third benchmark problem is a surface-to-surface 

radiation case. The medium enclosed by a equilateral 

triangle does not participate in the radiative heat transfer. 

As shown in Fig. 6, the bottom wall temperature is 

higher than the other two side walls. The exact heat flux 

on the each wall was calculated by using the view-factor 

method. In this case, RTE is solved with the medium 

emissivity equal to 0, which means that the radiative 

intensity emitted from each wall is not attenuated. The 

calculated wall heat fluxes seem to be comparatively 

good (see Table 1). 
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Fig. 6 Mesh for a equilateral triangular enclosure 

 
Table 1 Radiative heat fluxes on the surfaces of the triangular 

enclosure 

 
 

4. Conclusion 

 

The thermal radiation module of the LILAC code has 

been developed and validated in this study. It was found 

that the RTE model can be applied to optically thick and 

transparent non-emitting media. In the future study, the 

developed code will be used to study heat transfer in the 

gas-cooled reactor. 
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s u r fa c e  1 s u r fa c e  2 s u r fa c e  3
E x a c t  [ W ] 5 8 9 5 .8 - 2 9 4 7 .9 - 2 9 4 7 .9
C a lc u la te d  [ W ] 5 8 9 1 .3 - 2 9 0 4 .6 - 2 9 0 8 .2
E r ro r  [ % ] 0 .0 8 1 .4 7 1 .3 5
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