Effect of Heating Rate on the Sinterability of UO₂-(5~20wt%)CeO₂

Yeon Ku Kim^a, Sang Ho Na^a, Si Hyung Kim^a, Han Soo Kim^a, Young-Woo Lee^a

^a Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseung-gu, Daejeon 305-353, Korea, shna@kaeri.re.kr

1. Introduction

A MOX(Mixed Oxide) pellet is considered as a major fuel for the next generation nuclear power reactors. It is generally known that the compositions, sintered density and microstructure of the MOX pellet are dominant factors for maintaining a longer cycle operation in nuclear power reactors [1].

In this work, CeO₂ powder being used as surrogate of PuO₂, owing to its similar high temperature material properties, the effect of the heating rate on the (U,Ce)O₂ pellet as a function of the CeO₂ content(5, 10, 15 & 20wt%) under an oxygen(CO₂) atmosphere is investigated. Heating rate is an important control parameter of the sintered density and microstructures[2].

2. Methods and Results

2.1 Experimental method

4 different additive contents of CeO₂(UO₂-5wt%CeO₂, UO₂-10wt% CeO₂, UO₂-15wt%CeO₂ and UO₂-20wt% CeO_2) were prepared under the same preparation condition as follows. Each (U,Ce)O₂ powder is mixed for 1 hr in a mixer. And the mixed powder is milled to minimize the particle size and to homogenize the powder mixture, 4 hrs in a Dynamic Mill(DM) device. The DM jar revolves at 25 rpm. A zirconia ball (dia. 8 mm) as milling media was loaded into the jar with 70% of the volume of the jar. A sample size is 50g of UO_2 -CeO₂ powder mixture. Green pellets were prepared by a hydraulic press with a compaction pressure of 300 MPa. These green pellets were sintered at 1500°C for 4 hrs under a CO2 atmosphere with various heating rates(0.5~8°C/min). Sintered density and grain size of the (U,Ce)O₂ pellets were determined by the immersion method with water and the linear intercept method, respectively. The shrinkage of these pellets was measured with a thermo-mechanical analyzer, TMA-92 device (Setaram, France).

2.2 Results and discussion

Fig. 1 and Fig. 2 show the sintered density and the grain size of the $(U,Ce)O_2$ pellet for 4 different content of CeO₂ as a function of the heating rates under a CO₂ atmosphere, respectively. As shown in Fig. 1, the sintered density of the $(U,Ce)O_2$ pellet decreased monotonically as the heating rate increased, regardless of CeO₂ content. Fig.

2 shows that the grain size of the $(U,Ce)O_2$ pellet decreased with an increasing heating rate. But over the heating rate of 2°C/min, the grain size shows a saturated pattern. Also the grain sizes of these pellets decreased with increasing CeO₂ content under the same heating rate condition. As a result, a lower heating rate is desirable to create both a larger grain size and a higher sintered density of the $(U,Ce)O_2$ pellet under these sintering conditions. However, the grain size of $(U,Ce)O_2$ pellet is saturated above 15wt% of the content of CeO₂. Fig. 3 shows the representative microstructures of the $(U,Ce)O_2$ pellet with 4 different contents of CeO₂ as a function of the heating rates $(0.5 \text{ and } 2.0^\circ\text{C/min})$

Fig. 4 shows densification curves of the $(U,Ce)O_2$ pellet as a function of the heating rate. And also Table 1 lists the solid solution formation temperature, T_{SSF} , of the $(U,Ce)O_2$ pellet. As shown in Fig. 4 and Table 1, starting point of T_{SSF} increased with increasing heating rate, but it decreased as the additive content of CeO₂ increased. Meanwhile, the ending point of T_{SSF} increased with an increasing both the additive CeO₂ content and the heating rate. From this result, it is thought that the wider temperature range of solid solution formation is required as the additive content of CeO₂ increased. But for above 15wt% of the CeO₂ content these densification curves show a saturated pattern.

3. Conclusion

Results of the experiments described in this work lead to the following conclusions :

- The sintered densities and grain sizes of $(U, Ce)O_2$ pellet decreased with both an increasing heating rate and increasing additive content of CeO₂. But over the heating rate of 2°C/min, the grain size of $(U,Ce)O_2$ pellet is little affected by the heating rate and the additive CeO₂ content.

- The starting point of the solid solution formation increased with an increasing heating rate, but its starting point decreased as the additive content of CeO_2 increased. However, the ending point of the solid solution formation increased with increasing both the additive CeO_2 content and the heating rate.

- These results show a saturated pattern for above 15wt% of the CeO₂ content.

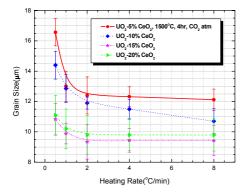


Fig. 1 The sintered density of the $(U,Ce)O_2$ with four different CeO₂ content as a function of the heating rate.

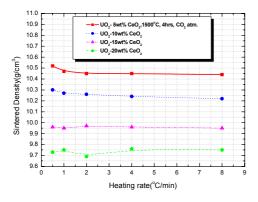


Fig. 2 The grain size of the $(U,Ce)O_2$ with four different CeO_2 content as a function of the heating rate.

Table 1. Solid solution formation temperature of $(U,Ce)O_2$ as a function of the heating rate.

Content	5(wt%CeO2)		10(wt%CeO2)		15(wt%CeO2)		20(wt%CeO2)	
Heating	Solid Solution Formation Temperature(T _{SSF})							
rate	start	end	start	end	start	end	start	End
0.5	900	1150	850	1210	830	1250	810	1250
1	920	1200	870	1250	855	1270	845	1280
2	940	1230	920	1280	880	1290	865	1290
4	980	1270	950	1300	920	1320	900	1270
8	1010	1270	970	1300	935	1320	910	1305

REFERENCES

- [1] IAEA-TECDOC-584(91-021-02), February 1991
- [2] Randall M. German, "Sintering Theory and Practice," John Wiley & Sons, Inc., (1996) 171

Acknowledgement

This work has been carried out under the Nuclear R & D program by the Ministry of Science and Technology (MOST), Korea.

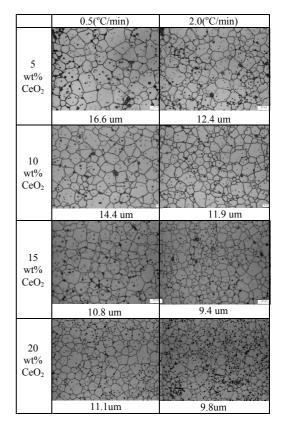


Fig. 3. Microstructures of the $(U,Ce)O_2$ with 4 different CeO_2 content as a function of the heating rate.

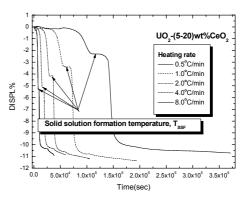


Fig. 4 The shrinkage of the $(U,Ce)O_2$ with four different CeO_2 content as a function of the heating rate