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1. Introduction 

 
In recent years many nuclear power plants have adopted 

modern digital I&C technologies since they are expected 

to significantly improve their performance and safety. 

OPR1000 in Korea (Korean standard nuclear power plant), 

typically Ulchin 5 & 6 nuclear units, have adopted safety-

critical digital systems due to the functional advantages of 

smart digital systems and the obsolescence of the 

traditional analog components. 

Recently, in Korea, there are several important 

industrial projects aiming at the development of 

digitalized safety-signal generation system for nuclear 

power plants. Among them, one of the most active 

research programs, Korean Nuclear I&C System (KNICS) 

project produced a new design of the engineered safety 

feature (ESF) component control system (CCS) based on 

newly developed microprocessor-based modules. Notable 

advances of this ESF-CCS design are active applications 

of new technologies: the in-module-test mechanism, the 

hot-standby redundancy, and the network communication 

technology for safety signal generation.  

In this study, we performed sensitivity study to quantify 

the unavailability of newly developed ESF-CCS. And a 

sensitivity analysis on the effect of input diversities on the 

component actuation signal unavailability is investigated. 

 

2. ESF Signal Generation: ESF-CCS, DPS & DMA  

 

The ESF-CCS provides automatic manipulation of 

corresponding ESF components which consist of safety 

pumps and valves. The ESF-CCS includes input, 

processor, output and network modules. The processor 

modules in the ESF-CCS system can be categorized into 

two levels: Group controller and loop controller. A group 

controller performs auctioneering by using four channel 

outputs from the plant protection system (PPS). If a 

specific ESF signal is generated based on the 

auctioneering results, the group controller provides 

information to loop controllers. A loop controller which 

receives signal from the group controller generates control 

signals for the field components such as safety pumps and 

valves. As shown in Figure 1, there are three group 

controllers and up to twelve loop controllers in a division 

of KNICS ESF-CCS. Each loop controller has hot-

standby backup.  

There are two redundant input sources of the ESF-CCS: 

the PPS and an operator’s manual actuation (MA). The 

group controllers’ signals are processed in a loop 

controller based on two-out-of-three voting logic. When a 

loop controller receives more than two actuation signals, it 

generates the control signal. If the failure of a loop 

controller is detected by the group controller, the backup 

controller of corresponding group controller will take over 

the task. 

In order to reduce the failure probability of field 

components’ control signal, there are two more sources in 

addition to the ESF-CCS. Diverse protection system 

(DPS) is independent and separated system for automatic 

signal generation. Diverse manual actuation (DMA) 

provides a redundant mean for the operator in the main 

control room to access the field components via hard-

wired path.  

 

3. Fault-Tree Model Development and Quantification 

 

The assumptions used in the model can be summarized 

as follows: 

- Generally, the fault coverage of processor-to-processor 

(PTP) monitoring is much higher than that of watchdog 

timer (WDT) monitoring because the PTP monitoring 

method usually adopts much more sophisticated 

algorithms [1]. Since the coverage of WDT monitoring 

Field Components

Plant Protection 
System

Manual
Actuation

Main Control Room

Diverse 
Protection 

System

Diverse
Manual 

Actuation

Logical OR

Network
Communication

One Division of 
KNICS ESF-CCS 

Group 
Controllers

Loop 
Controllers

Loop 
Controllers

Loop 
Controllers

 
Figure 1. Conceptual layout and signal flow around 

KNICS ESF-CCS 
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could be assumed as around 0.5 [2], we assumed that the 

PTP monitoring coverage to be 0.9. 

- We ignore the probability of software failure in the 

controllers.  

- If a failure of network communication occurs, a 

controller is assumed to fail to detect the failure of other 

controller(s). The loop controllers are assumed to fail 

when they lose communication with the group 

controllers.  

- We assume that the components are tested at least once 

per month and ignore the effect of automatic tests.  

- Once the operator fails to initiate the signal (MA failure), 

we do not give credit to the DMA. 

 

The top event of the developed model is the failure 

actuation signal for field component. Figure 2 shows one 

of the developed fault tree. The fault tree is constructed 

and the minimal cutsets are determined by using the 

KIRAP, an integrated safety assessment software package 

developed at KAERI. For the newly developed digital 

modules by the KNICS, we use their failure probability 

data in a KNICS design document [3]. For the 

conventional analog equipment and sensors, the generic 

data updated by KAERI [4] is used. 

We performed sensitivity study for quantifying the 

effect of two kinds of input diversities: manual actuation 

method diversity and automated system diversity. The 

results are summarized in Table 1. The failure probability 

of MA and DMA are assumed to be 0.05 and 0.1, 

respectively. Gray-colored cell indicates the case of no 

input redundancy. 

Usually, the order of magnitude of the failure 

probability of active components such as pumps and 

valves is 1.0E-3. The quantification results show that the 

failure probabilities of the safety signals are quite high in 

the case of no input redundancy. With input diversity, the 

actuation signal failure probabilities become low. The 

difference between the best signal unavailability and worst 

one is very severe (around 500 times). 

The result implies that the careful design of input 

diversity is very important. If the operators manipulate 

field components directly and they are well trained for this 

task, the risk from signal failure could be reduced 

effectively. 

 

Table 1.  The quantification results   

 ESF signal SIAS AFAS-1 

DPS X O 

Input sensor(s) 

Pressurizer    

pressure 

Containment 

pressure 

Steam generator 

level 

Signal Unavailability  

(w/o MA, DMA) 
4.78E-3 1.17E-4 

Signal Unavailability  

(w/ MA, w/oDMA) 
2.34E-3 7.95E-5 

Signal Unavailability  

(w/ MA, DMA) 
3.49E-4 9.71E-6 

 

5. Conclusion 

 

Based on fault-tree models developed to assess the 

failure probability of the ESF component actuation, we 

performed quantitative analysis on the effect of input 

diversities. Without input diversities, the results show that 

the failure probability of signal generation is too high to 

use in safety-critical application in nuclear plants. The 

application of diversity in the automatic signal generation 

system and that in the access path of human operators 

effectively improves the signal failure probability.  
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Figure 2. Typical top logic of the developed fault tree  
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