

Development of Application Programming Tool for Safety Grade PLC (POSAFE-Q)

Kyungmo Koo, Byungyong You, Tae-Wook Kim, Sengjae Cho, and Jin S. Lee

Department of Electrical Engineering

Pohang University of Science and Technology, Pohang, 790-784, Korea

{pumpkins, ybyvic, tw0822, sjcho80, jsoo}@postech.ac.kr

1. Introduction

The pSET (POSAFE-Q Software Engineering Tool)

is an application programming tool of the POSAFE-Q

which is a safety graded programmable logic controller

(PLC) developed for the reactor protect system of the

nuclear power plant. The pSET provides an integrated

development environment (IDE) which includes editors,

compiler, simulator, downloader, debugger, and monitor.

The pSET supports the IEC61131-3 standard software

model and languages such as LD (ladder diagram) and

FBD (function block diagram) [1] which are two of the

most widely used PLC programming languages in

industry fields. The pSET will also support SFC

(sequential function chart) language.

The pSET is developed as a part of a Korea Nuclear

Instrumentation & Control System (KNICS) project.

2. Development of pSET Software

The pSET software works on a PC with Windows

2000 or XP operating system and connected to

POSAFE-Q via RS-232C as shown in Fig. 1. Using

pSET software, user can develop application programs

for POSAFE-Q through a series of editing, compiling,

simulation, downloading, debugging and monitoring.

Figure 1. The pSET is an application programming tool of the

POSAFE-Q.

2.1 Software feature

The pSET provides an IDE which includes several

tools for development of application programs such as

editors, compilers, simulator, code downloader, monitor,

and simulator. The graphic user interface (GUI) of

pSET is shown in Fig. 2. The pSET supports IEC61131-

3 standard software model which has layered hierarchy

of configuration, resource, and programs with tasks [1].

This hierarchy structure can be edited easily in the work

space which is on the left side in the pSET IDE. Access

path which provides facilities for communicating data

and information with external of configuration [1] is

also supported.

Figure 2. Graphic user interface of pSET software

User can edit not only application programs, but also

I/O and task information. User also can compile,

simulate, download, debug, and monitor application

programs in a single IDE. In a debug mode, it is

possible to insert/remove break points rung by rung at

run-time and execute in a single-step. In a monitoring

mode, states of variables are displayed not only in an

output window (as a tabular form), but also in a

program editor. Variables are possible to be forced to a

specific state or reset. Several functionalities of variable

editor such as import/export variable list or clean up

unused variables are useful to handle huge number of

variables in a large-size application program. Moreover,

the pSETSIM, pSET simulator, can be used to simulate

application programs on a PC before they are

downloaded to POSAFE-Q.

Any user-specific programs can be packed in modules

in a form of user-defined function block (UDF). It helps

application programs to be more abstract, to be reusable,

and to be more compact by eliminating repeated codes.

Moreover, UDF can be written not only by LD/FBD

languages but also by C language. It makes C programs

which are already working in existing systems to be

imported in new system of POSAFE-Q with easy. The

number of I/O and the program size of UDF are not

limited as far as the hardware resources are available.

Other detailed features can be found in pSET

Software Requirement Specification (SRS) [2]. Every

features described in the SRS are considered and

implemented in the current version of pSET software.

Transactions of the Korean Nuclear Society Spring Meeting
Chuncheon, Korea, May 25-26 2006

2.2 Language Conversion

Since POSAFE-Q executes compiled machine code

of application programs directly, it is much faster than

interpreter-type PLC. Because a single application code

can make the whole PLC system crash, however, the

binary code must be generated by a reliable compiler.

Hence, it is important to develop a highly-reliable

compiler. And, the compiler should support a way to

validate that the generated code is functionally safe and

logically equivalent to the original application program

written in IEC61131-3 languages.

To cope with this problem, we construct LD/FBD and

SFC compilers to convert application programs to

ANSI-C code, not binary machine code. If application

programs are converted to C code correctly, we can

generate a reliable machine code through commercial C

compiler such as gcc or other CPU vender-supplied C

compiler. Moreover, since the generated C code can be

verified by engineers or commercial C code-verifying

tools, it can be used in verification and validation

(V&V) procedure for the development of safety-critical

application programs.

Figure 3. Compile procedure of user application programs

The procedure to make machine code from user

application program is described in Fig. 3. Each user

program or UDF written in LD/FBD language is

converted to ANSI-C format by the ld2cc (LD/FBD to

C converter). And, each UDF written in C-code is

transformed to ANSI-C format by cc2cc (C-code to C

converter). Converted C files are compiled to object

code by cl30.exe which is a C compiler for C32 DSP of

Texas Instruments. Every standard function blocks

defined in IEC61131-3 are implemented and provided

as vendor-provided FBD library. When application

programs include vendor-provided FBD, corresponding

FBD libraries are linked to the compiled object codes.

Then, finally, the machine code is generated.

2.3 Safety and Security Problems

Most of GUI-related parts of the pSET such as editor,

simulator, and monitor are not safe-critical, but

compiler and code loader are safety-related parts which

are designed and developed with consideration of

NUREG-CR6463 guidelines [3]. As described earlier,

the pSET compilers convert application programs to

ANSI-C codes, and extensive tests have been conducted

in not only the machine code level but also the

converted C code level.

Security is also an important issue in safety-critical

programs. Each operation of PLC must be allowed only

to a person with valid authentication. The pSET

specifies the following levels of authentication.

- Create/edit resource and programs (highest)

- Compile programs

- Load machine codes

- Run/stop/monitor machine codes (lowest)

Every operation is recorded in the log file with

information of operating time, operator, and operator’s

comments.

3. Conclusion

We developed pSET, an application programming

tool of the POSAFE-Q, as a part of KNICS project. The

pSET is an IDE including editors, compiler, simulator,

downloader, debugger, and monitor. The pSET supports

IEC61131-3 standard software model and programming

languages such as LD/FBD and SFC. Compilers of the

pSET convert application programs to ANSI-C codes,

which allow to be used in V&V for safety-critical

applications. Moreover, it is also possible to generate

reliable machine code with well-established commercial

C compiler.

REFERENCES

[1] IEC Standard 61131-3: Programmable controllers-Part 3,

IEC61131, 1993.

[2] KNICS-PLC-SRS: pSET Software Requirement Specific-

ation, KERI/POSCON, 2005.

[3] NUREG/CR-6463: Review guidelines on Software Lang-

uages for Use in Nuclear Power Plant Safety Systems.

	분과별 논제 및 발표자

