

Possibilities and Limitations of Applying Software Reliability Growth Models to Safety-

Critical Software

Man Cheol Kim, Seung Cheol Jang, Jaejoo Ha

Integrated Safety Assessment Division, Korea Atomic Energy Research Institute,

 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353, Korea, charleskim@kaeri.re.kr

1. Introduction

As digital systems are gradually introduced to nuclear

power plants (NPPs), the need of quantitatively

analyzing the reliability of the digital systems is also

increasing. Kang and Sung [1] identified (1) software

reliability, (2) common-cause failures (CCFs), and (3)

fault coverage as the three most critical factors in the

reliability analysis of digital systems.

For the estimation of the safety-critical software (the

software that is used in safety-critical digital systems),

the use of Bayesian Belief Networks (BBNs) seems to

be most widely used. The use of BBNs in reliability

estimation of safety-critical software is basically a

process of indirectly assigning a reliability based on

various observed information and experts’ opinions.

When software testing results or software failure

histories are available, we can use a process of directly

estimating the reliability of the software using various

software reliability growth models such as Jelinski-

Moranda model [2] and Goel-Okumoto’s non-

homogeneous Poisson process (NHPP) model [3]. Even

though it is generally known that software reliability

growth models cannot be applied to safety-critical

software due to small number of expected failure data

from the testing of safety-critical software, we try to

find possibilities and corresponding limitations of

applying software reliability growth models to safety-

critical software.

2. Methods and Results

2.1 Required Software Reliability

We first calculate a required reliability of safety-

critical software. It is assumed that the unavailability

due to software failures must not exceed 10
-4
, which is

the same requirement that was used for proving the

unavailability requirement of programmable logic

comparators (PDCs) of Wolsung NPP unit 1. The

testing period is assumed to be 1 month, which is the

same assumption that is used in the unavailability

analysis of digital plant protection system (DPPS) of

Ulchin NPPs unit 5 and 6. Based on the two values, the

required reliability of safety-critical software can be

calculated as follows:

U
T
≤

2

λ
 (1)

17
4

1078.2
12

10

2

−−
−

×=
×

=≤ hr
monthT

U
λ (2)

where,

 U : required unavailability

 λ : failure rate (of the software)

 T : test period.

2.2 Selection of Example Failure Data

To demonstrate the possibilities and limitations of

applying software reliability growth models to safety-

critical software through an example application, we

select an example failure data. The criteria for the

selection of the example data are reasonability (the

failure data can reasonably represent the expected

failures of safety-critical software) and accessibility

(other researchers can easily get the example failure

data). The selected example failure data are those from

Goel and Okumoto [3].

2.3 Selection of Software Reliability Growth Models

Musa [4] summarized various software reliability

growth models and categorized them into two groups:

(1) binomial-type models and (2) Poisson-type models.

Most basic and most well-known models in the two

groups are Jelinski-Moranda model [2] and Goel-

Okumoto’s NHPP model [3]. For this reason, we decide

to apply the two representative models to the selected

example failure data.

2.4 Analysis of Example Failure Data

After analysis of example failure data, we found that

the software reliability growth model produce software

reliability results after 22 failures. Figure 1 shows the

change of estimated total number of inherent software

faults (which is a part of software reliability result)

calculated by the two software reliability growth models,

as software failures are observed one by one. In Figure

1, the time-to-failure data (blue bar) represents the time-

to-failure of observed software failures. For example,

the 24
th
 failure was observed 91 days after the

occurrence and correct repair of the 23
rd
 software failure.

The number of already observed failures is

represented with the pink line. Because the total number

of inherent software faults should not be less than the

number of already observed failures, the green line and

the blue line should not be below the pink line.

Transactions of the Korean Nuclear Society Spring Meeting
Chuncheon, Korea, May 25-26 2006

The estimated total number of software inherent

faults by Jelinski-Moranda model and Goel-Okumoto’s

NHPP model are represented with the green line and the

blue line, respectively.

2.5 Possibilities of Software Reliability Growth Models

For the Jelinski-Moranda model, the estimated total

software faults ()N̂ and the single hazard rate (φ) after

34 failures (n) are calculated to be 34.003 and

4.845x10
-3
 month

-1
. Therefore, after 34 failures and

correct repair of the software, the expected failure rate

of the software (
34λ) becomes:

17

34 10056.6)ˆ(−−×=−= hrnNφλ (3)

When comparing Eq.(3) with Eq.(2), it can be said

that there are some possibilities that software reliability

growth models can be applied to prove the high

reliability of a safety-critical software when almost all

inherent software faults are identified and correctly

repaired.

2.6 Limitations of Software Reliability Growth Models

But, there are several limitations for the software

reliability growth models to be applied to safety-critical

software. One of the most serious limitations is that the

expected total numbers of inherent software faults

calculated by software reliability growth models are

highly sensitive to the time-to-failure data. As shown in

Figure 1, after long time-to-failures such as shown in

24
th
 failure, 27

th
 failure, and 31

st
 failure, drastic

decreases in the estimated total number of inherent

software faults can be observed for both software

reliability growth models. This sensitiveness to time-to-

failure data gives an impression that the resultant high

software reliability as shown in Eq.(3) can be a

coincidence in the calculation process. One of other

limitations is that it seems that we need at least 20

failure data, but we cannot make sure that that amount

of failure data will be generated during development

and testing of safety-critical software.

3. Conclusion

In this paper, we demonstrate that there are some

possibilities that software reliability growth models can

be applied to prove the high reliability of safety-critical

software at the point where all inherent software faults

are identified and correctly repaired. But, we also

describe the limitations of the possibility caused by the

high sensitiveness of the estimated total number of

inherent software faults to the time-to-failure data, and

the uncertainty on the availability of enough software

failures for the safety-critical software to be applied to

software reliability growth models.

REFERENCES

[1] H. G. Kang, T. Sung, An Analysis of Safety-Critical

Digital Systems for Risk-Informed Design, Reliability

Engineering and System Safety, Vol.78, p.307, 2002.

[2] Z. Jelinski, P. B. Moranda, “Software Reliability

Research” (W. Freiberger, Editor), Statistical Computer

Performance Evaluation, Academic, New York, p.465, 1972.

[3] A. L. Goel, K. Okumoto, Time-Dependent Error-Detection

Rate Model for Software Reliability and Other Performance

Measures, IEEE Transactions on Reliability, Vol.R-28(3),

p.206, 1979.

[4] J. D. Musa, A. Iannino, K. Okumoto, Software Reliability

– Measurement, Prediction, Application, McGraw-Hill Book

Company, Singapore, 1987.

0

50

100

150

200

250

300

22 23 24 25 26 27 28 29 30 31 32 33 34

Failure Number

T
im
e
-T
o
-F
a
ilu
re
 (
d
a
y
s
)

22

24

26

28

30

32

34

T
o
ta
l
N
u
m
b
e
r
o
f
F
a
ilu
re
s

Time-To-

Failure

Already

Observed

Failures

Jelinski-

Moranda

Goel-

Okumoto

Figure 1 Change of estimated total number of inherent software faults calculated by Jelinski-Moranda model and Goel-

Okumoto’s NHPP model

	분과별 논제 및 발표자

