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1. Introduction 

 
As digital systems are gradually introduced to nuclear 

power plants (NPPs), the need of quantitatively 

analyzing the reliability of the digital systems is also 

increasing. Kang and Sung [1] identified (1) software 

reliability, (2) common-cause failures (CCFs), and (3) 

fault coverage as the three most critical factors in the 

reliability analysis of digital systems. 

For the estimation of the safety-critical software (the 

software that is used in safety-critical digital systems), 

the use of Bayesian Belief Networks (BBNs) seems to 

be most widely used. The use of BBNs in reliability 

estimation of safety-critical software is basically a 

process of indirectly assigning a reliability based on 

various observed information and experts’ opinions. 

When software testing results or software failure 

histories are available, we can use a process of directly 

estimating the reliability of the software using various 

software reliability growth models such as Jelinski-

Moranda model [2] and Goel-Okumoto’s non-

homogeneous Poisson process (NHPP) model [3]. Even 

though it is generally known that software reliability 

growth models cannot be applied to safety-critical 

software due to small number of expected failure data 

from the testing of safety-critical software, we try to 

find possibilities and corresponding limitations of 

applying software reliability growth models to safety-

critical software. 

 

2. Methods and Results 

 

2.1 Required Software Reliability 

 

We first calculate a required reliability of safety-

critical software. It is assumed that the unavailability 

due to software failures must not exceed 10
-4
, which is 

the same requirement that was used for proving the 

unavailability requirement of programmable logic 

comparators (PDCs) of Wolsung NPP unit 1. The 

testing period is assumed to be 1 month, which is the 

same assumption that is used in the unavailability 

analysis of digital plant protection system (DPPS) of 

Ulchin NPPs unit 5 and 6. Based on the two values, the 

required reliability of safety-critical software can be 

calculated as follows: 
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where, 

 U : required unavailability 

 λ : failure rate (of the software) 

 T : test period. 

 

2.2 Selection of Example Failure Data 

 

To demonstrate the possibilities and limitations of 

applying software reliability growth models to safety-

critical software through an example application, we 

select an example failure data. The criteria for the 

selection of the example data are reasonability (the 

failure data can reasonably represent the expected 

failures of safety-critical software) and accessibility 

(other researchers can easily get the example failure 

data). The selected example failure data are those from 

Goel and Okumoto [3].  

 

2.3 Selection of Software Reliability Growth Models  

 

Musa [4] summarized various software reliability 

growth models and categorized them into two groups: 

(1) binomial-type models and (2) Poisson-type models. 

Most basic and most well-known models in the two 

groups are Jelinski-Moranda model [2] and Goel-

Okumoto’s NHPP model [3]. For this reason, we decide 

to apply the two representative models to the selected 

example failure data. 

 

2.4 Analysis of Example Failure Data 

 

After analysis of example failure data, we found that 

the software reliability growth model produce software 

reliability results after 22 failures. Figure 1 shows the 

change of estimated total number of inherent software 

faults (which is a part of software reliability result) 

calculated by the two software reliability growth models, 

as software failures are observed one by one. In Figure 

1, the time-to-failure data (blue bar) represents the time-

to-failure of observed software failures. For example, 

the 24
th
 failure was observed 91 days after the 

occurrence and correct repair of the 23
rd
 software failure. 

The number of already observed failures is 

represented with the pink line. Because the total number 

of inherent software faults should not be less than the 

number of already observed failures, the green line and 

the blue line should not be below the pink line. 
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The estimated total number of software inherent 

faults by Jelinski-Moranda model and Goel-Okumoto’s 

NHPP model are represented with the green line and the 

blue line, respectively. 

 

2.5 Possibilities of Software Reliability Growth Models 

 

For the Jelinski-Moranda model, the estimated total 

software faults ( )N̂  and the single hazard rate (φ) after 

34 failures (n) are calculated to be 34.003 and 

4.845x10
-3
 month

-1
. Therefore, after 34 failures and 

correct repair of the software, the expected failure rate 

of the software (
34λ ) becomes: 
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When comparing Eq.(3) with Eq.(2), it can be said 

that there are some possibilities that software reliability 

growth models can be applied to prove the high 

reliability of a safety-critical software when almost all 

inherent software faults are identified and correctly 

repaired.  

 

2.6 Limitations of Software Reliability Growth Models 

 

But, there are several limitations for the software 

reliability growth models to be applied to safety-critical 

software. One of the most serious limitations is that the 

expected total numbers of inherent software faults 

calculated by software reliability growth models are 

highly sensitive to the time-to-failure data. As shown in 

Figure 1, after long time-to-failures such as shown in 

24
th
 failure, 27

th
 failure, and 31

st
 failure, drastic 

decreases in the estimated total number of inherent 

software faults can be observed for both software 

reliability growth models. This sensitiveness to time-to-

failure data gives an impression that the resultant high 

software reliability as shown in Eq.(3) can be a 

coincidence in the calculation process. One of other 

limitations is that it seems that we need at least 20 

failure data, but we cannot make sure that that amount 

of failure data will be generated during development 

and testing of safety-critical software.  

 

3. Conclusion 

 

In this paper, we demonstrate that there are some 

possibilities that software reliability growth models can 

be applied to prove the high reliability of safety-critical 

software at the point where all inherent software faults 

are identified and correctly repaired. But, we also 

describe the limitations of the possibility caused by the 

high sensitiveness of the estimated total number of 

inherent software faults to the time-to-failure data, and 

the uncertainty on the availability of enough software 

failures for the safety-critical software to be applied to 

software reliability growth models.  
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Figure 1  Change of estimated total number of inherent software faults calculated by  Jelinski-Moranda model and Goel-

Okumoto’s NHPP model 
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