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1. Introduction 

 
The thermal/hydraulic behavior of the multiphase flow 

is predicted by solving the related governing equations.  

The equations are devised based on the mass, momentum, 

and energy conservation laws and physical models 

defining the thermal and mechanical interactions between 

the phases involved.  A great deal of efforts has been paid, 

during the past two or three decades, to solve the 

equations in an efficient and stable manner.  The reliable 

methodology to obtain the solution of the equation set is 

essential, especially in nuclear thermal/ hydraulic safety 

analysis where the consequences of the various 

hypothetical incidents are required to be within a 

predefined range of acceptance. 

Depending on the method to handle the time derivative 

term, the methods for solving the mass, momentum and 

energy equation set are normally categorized as explicit, 

semi-implicit, and fully implicit methods.  

It is well known that the explicit and semi-implicit 

methods, however, have a shortcoming of the material 

Courant limit. The maximum allowable time step could be 

too small for some applications, especially where fine 

spatial resolutions are required.  The separate analysis of 

the quenching front behavior during the reflood phase of 

the boil-off accident would be one of such cases.  Even 

though the limitation could be mitigated through SETS 

method [1] the explicit treatment of the model coefficients 

between the phases could still limit the allowable time 

step. 

In this study, the fully implicit solver is developed for a 

one-dimensional channel flow as three-fields.  The three-

field modeling of the water is also seen in the system 

codes, as in COBRA [2].  The current work, however, 

separately treats the thermal energy for the continuous and 

entrained liquids, as opposed to the combined treatment in 

COBRA.  The separate modeling would allow for a 

analysis of the thermal interaction of the entrained liquid 

with highly supper heated steam in a more realistic 

manner.  The higher evaporation might be observed with 

the separate energy modeling in such a case.  

 

2. Methods 

 

2.1 Governing equations 

The governing equation set for the three-field modeling 

of the two phase flow is based on the time-space average 

equations of single-pressure two-fluid model [3]. The 

equations are: 
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where η stands for the evaporation fraction from the 

entrained liquid, and the subscription lv, and e are for 

the vapor, continuous liquid and entrained liquid, 

respectively.  Similarly, the momentum equation and 

energy equations for the gas phase are, respectively, 
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The momentum and energy equations for the 

continuous liquid and entrained liquid can be obtained 

similarly.  

2.2 Finite Difference Equations 

The differential equation set is integrated over the 1-

diminentional node depicted in Figure 1.  

 

 

 

  

Figure 1. One-dimensional Nodes for a channel flow 

 

The momentum equation for the vapor is in the form of  
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The advection terms enclosed in the angle bracket  

are evaluated as an upwind scheme.  The mass, and 

energy equations as well as the momentum equations for 

other fields are derived similarly.  As seen in the 

equations (6), all the terms on the right side are evaluated 

at the time step of (n+1), meaning the scheme is treated 

fully-implicitly.   

 

2.3 Solving the Finite Difference Equations Set 

The total of nine equations for the whole governing 

equation set is solved by Newton iteration [4,5].  

 For the system of equations 
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nxxx ),...,( 1= , let 
*x be the true 

solution of the equation set (7) and 
0x be the guess for 

this solution. Then we expand each function if  about 
0x  

as: 
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Then, we solve  nixli ,...,1,0)( == to obtain the new 

approximation
1x  to x . The process is repeated until a 

convergence conditions are satisfied.  The process can be 

represented as a matrix form of  
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    The essential step in equation (9) is to determine the 

derivative )(' mxF which is 
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   The each element of the Jacobian matrix is determined 

using the numerical differentiation 

 

   3. Results and Discussion 

   The fully-implicit set of finite deference equation 

implemented using the Newton iteration is tested.  

Although the interphase phenomena modeling is not 

completed at this stage of development, the soundness of 

the solver is verified by the following tests.  In test 1, the 

motion of the liquid phase is calculated in the vertical 

channel without a wall friction.  The free-fall behavior 

with the equilibrium pressure boundary condition is 

verified by the velocity of 9.8m/s and 19.6m/s at 

time=1sec and 2sec, respectively, with 5 digit accuracy. 

The second test is pressure wave test with a slightly 

elevated pressure of 1.1 bar initiated at one end of a 

channel filled with a liquid water at 1.0 bar. The channel 

is modeled with 20 nodes. The pressure variations are 

seen in the figure 2 for 2 meter and 10 meter channels.  

The 10 meter channel is seen to require more time to 

damp out the pressure wave.  
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Figure 2. Pressure shock waves 

The last test is a manometer problem.  The U-tube 

modeling and the velocity change at the node 10 is 

depicted in Figure 3.  The liquid which initially occupies 

nodes 5 to 18 is released at time 0.0, resulting manometer 

oscillation driven by the gravity force. The amplitude of 

the velocity is seen to reduce very slightly.   The pressure 

variances for node 2 to 6 are seen to be very stable too. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure .3 Manometer nodding with velocity and pressures 

 

4. Summary 

In this study, a fully implicit solver for the two phase 

flow is developed. The two phase flow of water is 

modeled by three field mass, momentum and energy 

equation set.  The initial verification tests show good 

physical consistency. With the closure laws for the 

interphase interactions, which are under development, the 

fully implicit solver is expected as a viable tool for 

developing and examining the key phenomena in the two 

phase channel flow.  
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