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1. Introduction

Recently, we extended the analytic function
expansion nodal (AFEN) method developed quite
extensively in Cartesian (x,y,z) geometry and in
hexagonal-z geometry to the treatment of the full three-
dimensional cylindrical (1,0,z) geometry for pebble bed
reactors(PBRs).[1] The AFEN methodology in this
geometry as in hexagonal geometry is “robust”, due to
the unique feature of the AFEN method that it does not
use the transverse integration.

The transverse integration in the usual nodal methods,
however, leads to an impasse[2], that is, failure of the
azimuthal term to be transverse-integrated over r-z
surface. The recent work reported in Ref. 3 is an attempt
in this class of transverse integration nodal methods but
it involves several unjustified assumptions and
approximations in the formulation.

The typical pebble bed reactors have void regions in
the top and side regions of the core. Ref. 4 provides
finite diffusion coefficients for void regions (with zero
other cross reactions) so that the void regions could be
modeled by diffusion theory. This paper presents an
optional treatment of the void regions in the core based
on AFEN methodology.

2. Basic Theory and Method

The AFEN formulation in the (r,0,z) coordinates
system starts from the following multi-group diffusion
equations in a homogenized node (see Fig. 1) :

~V24(r,0,2) +[Alp(r,6,2) = 0, M

where

[A]=[D]" ([ZJ—ki[x][vz,]}
eff
for solid (nonvoid) regions.
All the notations are standard. The equations can be
decoupled as follows:
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Fig. 1 Node shape in (r,0,z) coordinates system

A general solution to Eq. (2) can be represented in
terms of analytic basis functions that can be obtained
using the method of separation of variables. For
practical implementation, we choose the solution of a
node expressed in a finite number of terms.
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where 4, i=0,1, --- ,12, are expansion coefficient
vectors.

Note that each term in Eq. (3) is an analytic solution
of Eq. (2). The thirteen coefficients in Eq. (3) are made
to correspond to the thirteen nodal unknowns for a
node : i) one node average flux, and ii) twelve half-
interface average fluxes (two half-interface average
fluxes for each of the six surfaces).

The AFEN formulation for void nodes starts from the
following multi-group “diffusion” equations :

[DIV*4(r.6,2) =0, @)
without the second term in Eq. (1). This is the model
implied in Ref. [4] for void regions with specified

“equivalent” diffusion coefficients and zero cross
sections.



The type of equations (4), i.e., Laplace equation,
appears quite extensively in electromagnetic theory in
physics [5].

A general solution to Eq.(4) can be represented in
terms of analytic basis functions that can be obtained
using the same method of separation of variables
employed in Eq.(1):

#(r,0,2) = A, +rSin(0) A4 +rCos(0) A4,

+1 Sin(0) A, + 1 Cos(0)4,
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Note that each term in Eq. (5) is an analytic solution of
Eq. (4). The twelve coefficients in Eq. (5) are made to
correspond to the twelve nodal unknowns for a node : i)
twelve half-interface average fluxes (two half-interface
average fluxes for each of the six surfaces). Note that
for a void node we use twelve nodal unknowns, since
we exclude the node average flux from the nodal
unknowns.

3. Numerical Results and Conclusions

This was implemented in the TOPS code. The TOPS
code was used to solve the OECD/PBMR-400
benchmark problem, shown in Fig. 2. It is a two-group
problem with void regions above the annular core and
between outer reflector and core barrel and ;™ =0

boundary condition (specified as BLACK boundary
condition). Detailed configurations and cross sections
are shown in Ref. [4].

To describe void regions in the benchmark problem,
OECD/NEA provided directional dependent diffusion
coefficients. Table I shows the results on k.; with r and
z directional diffusion coefficients on side and top void
regions of TOPS and VENTURE, respectively. In
addition, we provided results using very small amount
of absorption cross sections (1E-9 cm™ for fast group
and 1E-8 cm™ for thermal group) on void regions by
the TOPS code.

Table I. Results of the OECD/PBMR-400 benchmark
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Flg 2. OECD/PBMR-400 benchmark problem

The results show that the void calculation option
based on AFEN methodology works correctly.
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