

Interface Testing for RTOS System Tasks based on the Run-Time Monitoring

Ahyoung Sung,a and Byoungju Choi,a

a Dept. of Computer Science & Engg, Ewha University, Seoul, Korea

aysung@ewhain.net, bjchoi@ewha.ac.kr

1. Introduction

Safety critical embedded system requires high

dependability of not only hardware but also software. It

is intricate to modify embedded software once

embedded. Therefore, it is necessary to have rigorous

regulations to assure the quality of safety critical

embedded software.

IEEE V&V (Verification and Validation) process [1]

is recommended for software dependability, but a more

quantitative evaluation method like software testing is

necessary. In case of safety critical embedded software,

it is essential to have a test that reflects unique features

of the target hardware and its operating system.

The safety grade PLC (Programmable Logic

Controller) is a safety critical embedded system where

hardware and software are tightly coupled. The PLC has

HdS (Hardware dependent Software) [2] and it is tightly

coupled with RTOS (Real Time Operating System).

Especially, system tasks that are tightly coupled with

target hardware and RTOS kernel have large influence

on the dependability of the entire PLC.

Therefore, interface testing for system tasks that

reflects the features of target hardware and RTOS kernel

becomes the core of the PLC integration test. Here, we

define interfaces as overlapped parts between two

different layers on the system architecture.

In this paper, we identify interfaces for system tasks

and apply the identified interfaces to the safety grade

PLC. Finally, we show the test results through the

empirical study.

2. Interfaces of the Safety Grade PLC

The safety grade PLC is based on the TI TMS320C32

DSP (Digital Signal Processor) board [3]. It downloads,

executes, and controls the application programs using

the RS-232C communication [4].

Figure 1 represents the architecture of the safety

grade PLC. As shown in Figure 1, hardware is physical

devices on the TMS320C32 DSP board and software is

HdS of HAL (Hardware Abstraction Layer) [5], RTOS

kernel [6], and system tasks.

The HdS of the HAL is to handle the context switch,

to manage the ISR (Interrupt Service Routine) vectors,

and to manage the critical regions. The HAL is

implemented to access and to control target hardware

directly.

Context Switch

Manager

Context Switch

Manager
Critical Region

Manager

Critical Region

Manager
ISR Vector

Manager

ISR Vector

Manager

SchedulerScheduler
TimerTimer

Communication ChannelCommunication Channel

Startup

Task

Startup

Task

Shell

Task

Shell

Task Diagnosis

Task

Diagnosis

Task

LoaderRxrdy

Task

LoaderRxrdy

Task
User

Task

User

TaskLoader_Service

Task

Loader_Service

Task

RegisterRegister

LEDLED

RAMRAM

WDTWDT

FLASHFLASHNVRAMNVRAM PowerPower

UARTUART

TimerTimer

RTCRTC BUSBUS Toggle SwitchToggle Switch

Application

Layer

OS

Layer
System

Tasks

RTOS

Kernel

Hardware

Layer

Hardware

Abstraction

Layer

pSET ApplicationpSET Application pSET ApplicationpSET Application pSET ApplicationpSET Application

Context Switch

Manager

Context Switch

Manager
Critical Region

Manager

Critical Region

Manager
ISR Vector

Manager

ISR Vector

Manager
Context Switch

Manager

Context Switch

Manager
Critical Region

Manager

Critical Region

Manager
ISR Vector

Manager

ISR Vector

Manager

SchedulerScheduler
TimerTimer

Communication ChannelCommunication Channel

Startup

Task

Startup

Task

Shell

Task

Shell

Task Diagnosis

Task

Diagnosis

Task

LoaderRxrdy

Task

LoaderRxrdy

Task
User

Task

User

TaskLoader_Service

Task

Loader_Service

Task

RegisterRegister

LEDLED

RAMRAM

WDTWDT

FLASHFLASHNVRAMNVRAM PowerPower

UARTUART

TimerTimer

RTCRTC BUSBUS Toggle SwitchToggle Switch

Application

Layer

OS

Layer
System

Tasks

RTOS

Kernel

Hardware

Layer

Hardware

Abstraction

Layer

pSET ApplicationpSET Application pSET ApplicationpSET Application pSET ApplicationpSET Application

Figure 1. Architecture of the safety grade PLC

The target software focused in this paper is system

tasks. The system tasks are meaningful and executable

software that occupies CPU. In case of the safety grade

PLC, there are five system tasks including the Startup

Task, the Shell Task, the Diagnosis Task, the

LoaderRxrdy Task, and the Loader_Service Task [4].

Since system tasks associated with the kernel are

loaded and executed on the target board, there are two

types of interface as follows:

Hardware interface based on HdS and the kernel

interface based on RTOS API (Application Program

Interface).

� Hardware Interface

The system tasks read and write values in RAM or

Register to control the target hardware. Therefore, the

interface between the system tasks and the target

hardware is defined as the location where software reads

and writes values to control.

Register, RAM, FLASH and NVRAM have direct

interface, while physical devices like LED and Timer

have indirect interface through RAM or Register by

using in-line assembly or global variables.

� Kernel Interface

System tasks have kernel interface using the RTOS

API. RTOS Kernel has services including the task

management, the inter-task communication based on

semaphore, queue, mailbox, Interrupt Handling, Time

Management, and Memory Management [6].

Taking ‘Task Management’ and ‘Inter Task

Communication’ as examples, APIs such as

Transactions of the Korean Nuclear Society Spring Meeting
Chuncheon, Korea, May 25-26 2006

OSTaskCreate() of ‘Task Management’, OSMboxPsot(),

OSSemPost(), and OSQPost() access data structures

such as TCB (Task Control Block), ECB (Event

Control Block), and QCB (Queue Control Block) in the

kernel and their corresponding RAM area.

3. Interface Testing for RTOS System Tasks

We perform interface testing for the system tasks

based on run-time monitoring. There are synchronous

and asynchronous monitoring techniques for the run-

time environment [7]. Synchronous monitoring stops the

current program and examines the particular point in the

program. Asynchronous monitoring examines the entire

system by separate daemons during the execution of the

real-time tasks. However, since the daemon is executed

periodically as a separate task, asynchronous monitoring

may provide imprecise information.

In this paper, we perform interface testing based on

the synchronous monitoring. We set break points on the

particular location in the source code and observe the

monitored results. The break points represent the

mapped location of hardware interface and kernel

interface in the source code. We determine ‘pass’ if the

monitored results satisfy the expected output, and ‘fail’

otherwise.

The core of interface testing is to select the break

points on the source code and to determine the symbols

to be monitored. As shown in Table 1, the test cases of

interface testing have input and expected output. We

define the break points as input and the monitored

symbols as expected output.

Table 1. Format of Test Cases

Input

(Break Points)

Expected Output

(symbols to be monitored)

HW

Interface

Inline Assembly

or global

variable

RAM address corresponds

with in-line assembly or the

global variable

API of Task

Management
TCB

API of Inter

Task

Communication

TCB, ECB, and QCB (only

for Queue management)

API of Interrupt

Handling
TCB, ISR_ID, and Registers

API of Time

Management
TASK_ID_DELAY_TICK

Kernel

Interface

API of Memory

Management
TCB and its RAM address

4. Interface Test Results and Conclusive Remarks

As an empirical study, we performed the interface

testing for system tasks including the Startup Task, the

Shell Task, the Diagnosis Task, the LoaderRxrdy Task,

and the Loader_Service Task in Figure 1.

The interface testing is performed on the Code

Composer [8] that supports the TMS320C32 DSP board

and RTOS kernel. To monitor the real results, we use

the ‘Watch window’ menu and the ‘View memory map’

menu of the Code Composer.

Table 2 demonstrates the interface test results for the

system tasks in Figure 1. As shown in Table 2, we

selected the total number of 212 test cases. To test the

hardware interface and kernel interface, we selected 162

test cases and 50 test cases, respectively. Through this

empirical study, we didn’t detect faults in kernel

interface while we detected 38 faults in hardware

interface.

Table 2. Results of Interface Testing

Test Case #

(Detected Faults #) System Tasks

in Figure 1 HW

Interface

Kernel

Interface

Total

Startup Task 52 (16) 2 9 (0) 81 (16)

Shell Task 23 (8) 2 (0) 25 (8)

Diagnosis Task 69 (8) 1 (0) 70 (8)

LoaderRxrdy Task 1 (1) 12 (0) 13 (1)

Loader_Service Task 17 (5) 6 (0) 23 (5)

Total 162 (38) 50 (0) 212 (38)

Since system tasks associated with the kernel are

loaded and executed on the target board, they have

hardware interface and kernel interface. In this paper,

we proposed interface testing based on the synchronous

monitoring and applied the interface testing to the

system tasks in the safety grade PLC.

In the future, we are going to perform empirical

studies that show the excellence of the proposed

interface testing technique.

REFERENCES

[1] IEEE Std. 1012-1998, “IEEE Standard for Software

Verification and Validation Plan”, IEEE, 1998.

[2] S. Yoo and A.A. Jerraya, “Introduction to Hardware

Abstraction Layers for SoC,” in Proc. of Design, Automation

and Test in Europe Conf. and Exhibition (DATE), IEEE,

2003, pp.336~337; 2003.

[3] TMS320C32 Digital Signal Processor available in

http://www.ti.com/, Texas Instrument, 1998.

[4] KNICS-PLC-SDS331-01, Software Design Specification

for the PLC Processor Module, KAERI, 2004.

[5] A. Jerraya, W.Wolf, “Hardware/Software Interface

Codesign for Embedded Systems”, IEEE Computer, pp63~69,

Feb., 2005.

[6] J.J Labrosse, MicroC/OS-II, The Real-Time Kernel, CMP

Books, 1999.

[7] S.E.Chodrow, F.Jahnian, and M.Donner, “Run-Time

Monitoring of Real-Time Systems”, in the Proc. of Run-Time

Systems Symposium (RTSS), IEEE, pp.103-112, 1991.

[8] SPRU296, Code Composer User’s Guide, Texas

Instrument, 1999.

	분과별 논제 및 발표자

