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1. Introduction 

 

Safety critical embedded system requires high 

dependability of not only hardware but also software. It 

is intricate to modify embedded software once 

embedded. Therefore, it is necessary to have rigorous 

regulations to assure the quality of safety critical 

embedded software.  

IEEE V&V (Verification and Validation) process [1] 

is recommended for software dependability, but a more 

quantitative evaluation method like software testing is 

necessary. In case of safety critical embedded software, 

it is essential to have a test that reflects unique features 

of the target hardware and its operating system. 

The safety grade PLC (Programmable Logic 

Controller) is a safety critical embedded system where 

hardware and software are tightly coupled. The PLC has 

HdS (Hardware dependent Software) [2] and it is tightly 

coupled with RTOS (Real Time Operating System). 

Especially, system tasks that are tightly coupled with 

target hardware and RTOS kernel have large influence 

on the dependability of the entire PLC.  

Therefore, interface testing for system tasks that 

reflects the features of target hardware and RTOS kernel 

becomes the core of the PLC integration test. Here, we 

define interfaces as overlapped parts between two 

different layers on the system architecture. 

In this paper, we identify interfaces for system tasks 

and apply the identified interfaces to the safety grade 

PLC. Finally, we show the test results through the 

empirical study. 

 

2.  Interfaces of the Safety Grade PLC 

 

The safety grade PLC is based on the TI TMS320C32 

DSP (Digital Signal Processor) board [3]. It downloads, 

executes, and controls the application programs using 

the RS-232C communication [4].  

Figure 1 represents the architecture of the safety 

grade PLC. As shown in Figure 1, hardware is physical 

devices on the TMS320C32 DSP board and software is 

HdS of HAL (Hardware Abstraction Layer) [5], RTOS 

kernel [6], and system tasks.  

The HdS of the HAL is to handle the context switch, 

to manage the ISR (Interrupt Service Routine) vectors, 

and to manage the critical regions. The HAL is 

implemented to access and to control target hardware 

directly. 
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Figure 1. Architecture of the safety grade PLC 

 

 

The target software focused in this paper is system 

tasks. The system tasks are meaningful and executable 

software that occupies CPU. In case of the safety grade 

PLC, there are five system tasks including the Startup 

Task, the Shell Task, the Diagnosis Task, the 

LoaderRxrdy Task, and the Loader_Service Task [4]. 

Since system tasks associated with the kernel are 

loaded and executed on the target board, there are two 

types of interface as follows:  

Hardware interface based on HdS and the kernel 

interface based on RTOS API (Application Program 

Interface). 

 

� Hardware Interface 

The system tasks read and write values in RAM or 

Register to control the target hardware. Therefore, the 

interface between the system tasks and the target 

hardware is defined as the location where software reads 

and writes values to control. 

Register, RAM, FLASH and NVRAM have direct 

interface, while physical devices like LED and Timer 

have indirect interface through RAM or Register by 

using in-line assembly or global variables. 

 

� Kernel Interface 

System tasks have kernel interface using the RTOS 

API. RTOS Kernel has services including the task 

management, the inter-task communication based on 

semaphore, queue, mailbox, Interrupt Handling, Time 

Management, and Memory Management [6].  

Taking ‘Task Management’ and ‘Inter Task 

Communication’ as examples, APIs such as 
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OSTaskCreate() of ‘Task Management’, OSMboxPsot(), 

OSSemPost(), and OSQPost() access data structures 

such as  TCB (Task Control Block), ECB (Event 

Control Block), and QCB (Queue Control Block) in the 

kernel and their corresponding RAM area. 

 

3.  Interface Testing for RTOS System Tasks 

 

We perform interface testing for the system tasks 

based on run-time monitoring. There are synchronous 

and asynchronous monitoring techniques for the run-

time environment [7]. Synchronous monitoring stops the 

current program and examines the particular point in the 

program. Asynchronous monitoring examines the entire 

system by separate daemons during the execution of the 

real-time tasks. However, since the daemon is executed 

periodically as a separate task, asynchronous monitoring 

may provide imprecise information.  

In this paper, we perform interface testing based on 

the synchronous monitoring. We set break points on the 

particular location in the source code and observe the 

monitored results. The break points represent the 

mapped location of hardware interface and kernel 

interface in the source code. We determine ‘pass’ if the 

monitored results satisfy the expected output, and ‘fail’ 

otherwise. 

The core of interface testing is to select the break 

points on the source code and to determine the symbols 

to be monitored. As shown in Table 1, the test cases of 

interface testing have input and expected output. We 

define the break points as input and the monitored 

symbols as expected output.  

 
Table 1. Format of Test Cases 

 
Input 

(Break Points) 

Expected Output 

(symbols to be monitored) 

HW 

Interface 

Inline Assembly 

or global 

variable 

RAM address corresponds 

with in-line assembly or the 

global variable 

API of Task 

Management 
TCB 

API of Inter 

Task 

Communication 

TCB, ECB, and QCB (only 

for Queue management) 

API of Interrupt 

Handling 
TCB, ISR_ID, and Registers 

API of Time 

Management 
TASK_ID_DELAY_TICK 

Kernel 

Interface 

API of Memory 

Management 
TCB and its RAM address 

 

 

4.  Interface Test Results and Conclusive Remarks 

 

As an empirical study, we performed the interface 

testing for system tasks including the Startup Task, the 

Shell Task, the Diagnosis Task, the LoaderRxrdy Task, 

and the Loader_Service Task in Figure 1. 

The interface testing is performed on the Code 

Composer [8] that supports the TMS320C32 DSP board 

and RTOS kernel. To monitor the real results, we use 

the ‘Watch window’ menu and the ‘View memory map’ 

menu of the Code Composer. 

Table 2 demonstrates the interface test results for the 

system tasks in Figure 1. As shown in Table 2, we 

selected the total number of 212 test cases. To test the 

hardware interface and kernel interface, we selected 162 

test cases and 50 test cases, respectively. Through this 

empirical study, we didn’t detect faults in kernel 

interface while we detected 38 faults in hardware 

interface.  

 
Table 2. Results of Interface Testing 

Test Case #  

(Detected Faults #) System Tasks  

in Figure 1 HW 

Interface 

Kernel 

Interface 

Total 

Startup Task 52 (16) 2 9 (0) 81 (16) 

Shell Task 23 (8) 2 (0) 25 (8) 

Diagnosis Task 69 (8) 1 (0) 70 (8) 

LoaderRxrdy Task 1 (1) 12 (0) 13 (1) 

Loader_Service Task 17 (5) 6 (0) 23 (5) 

Total 162 (38) 50 (0) 212 (38) 

 

 

Since system tasks associated with the kernel are 

loaded and executed on the target board, they have 

hardware interface and kernel interface. In this paper, 

we proposed interface testing based on the synchronous 

monitoring and applied the interface testing to the 

system tasks in the safety grade PLC. 

In the future, we are going to perform empirical 

studies that show the excellence of the proposed 

interface testing technique. 
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