

The Testing Strategy for the Embedded Software

implemented in I/O module of KNICS PLC

Jong Gyun Choi, Won Man Park, Dong Young Lee,

Korea Atomic Energy Research Institute

choijg@kaeri.re.kr, wmpark@kaeri.re.kr, dylee2@kaeri.re.kr.

1. Introduction

The safety Grade PLC (POSAFE) is being developed

in the Korea Nuclear Instrumentation and Control

System (KNICS) R&D project. The PLC is being

designed for satisfies Safety Class 1E, Quality Class 1,

and Seismic Category I. The embedded software for

implementation in I/O module such as the pIAOS and

pOAOS is being developed according to the safety

critical software life cycle. The developed software

according to the software life cycle is tested for

verification and validation by an independent software

testing team. This paper describes the software testing

strategy to find the faults that may exist in software

design and code effectively.

2. Development of a Safety PLC

The POSAFE is a PLC being developed according to

the safety equipment design procedure class to apply it

to the safety system in a nuclear power plant. The

design, V&V, development process and quality

assurance (QA) according to the configuration

management of the POSAFE hardware and software

satisfy the 10CFR50, Appendix B requirements.

POSAFE is composed of various modules used in the

safety system of a nuclear power plant such as a sub

rack, power module, processor module, communication

module, digital input/output module, analog

input/output module, and a high speed pulse counter

module [1].

The dimensions of the POSAFE sub rack are 482.6 x

281.35 x 294mm, which satisfies the 19 inches standard

and can be used with a combination of several

input/output modules and communication modules.

The sub rack uses 2 independent power modules

(PWR1&2), each power module has the 100% power

supply capability needed for a sub rack. Accordingly,

even though there is a fault in a power module, it does

not affect the operation of POSAFE. An Extension sub

rack is connected to the sub rack through a local bus

extension module.

POSAFE provides an engineering tool (pSET) which

enables users to develop application programs. The

developers of the application programs can perform a

programming, debugging, application program

simulation and a writing of program related documents

by using the pSET. The pSET is operated in Windows

2000/NT, it provides standard functions and 3

languages (LD, FBD, SFC) presented by IEC 61131-3,

and it satisfies the NUREG-CR6463 criteria.

The POSAFE hardware satisfies the IEEE standard

Safety Class 1E. And it is classified into seismic

category I.

3. Software Design and V&V

The embedded software such as the pCOS, pIAOS

and pOAOS are being developed according to the safety

critical software life cycle. The software of the POSAFE

is developed according to a software developing plan

and procedure [2]. This plan and procedure is in

accordance with USNRC Reg. Guide 1.173 and IEEE

Std. 1074. Especially, the formal method is applied to

design the SRS (Software Requirement Spec.) and the

SDS (Software Design Spec.) to be error-free.

The developed software according to the software

life cycle is verified by an independent software

verification and validation (V&V) team [3]. The

software of the POSAFE is verified according to a

software V&V plan. This V&V plan and the procedure

are in accordance with USNRC Reg. Guide 1.172 and

IEEE Std. 1012.

As a part of V&V activities, the software testing is a

task that executes software (program) with intent of

finding errors in software design and code because

errors uncovered through the testing can make the

system unsafe. Therefore, it is very important to devise

an effective software testing strategy for finding as

many software errors as possible.

4. Software Testing Strategy

In this section software testing strategy used for

finding errors in pIAOS and pOAOS is described.

pIAOS and pOAOS are the software designed for

analog input module and analog output module of

KNICS PLC respectively [4, 5].

Figure 1. Software Testing Model

Requirements

of target system

Implementation

representation

Functional

Specification

System

Test

Integration

Test

 Unit/Component

Test

 Acceptance

Test

Validation

Verification

Verification

Verification

Verification

High-Level

Design

Low-Level

Design

SRS

SDS

Transactions of the Korean Nuclear Society Spring Meeting
Chuncheon, Korea, May 25-26 2006

Figure 1 show the software testing model used for

pIAOS and pOAOS testing. The software testing model

includes the unit (component) test, integration test,

system test and acceptance test. The software unit test is

process of testing the individual subprograms,

subroutines in a program. That is, rather than initially

testing the program as a whole, testing is first focused

on the smaller building blocks of the program. The

software integration test is a process of testing interfaces

between subprograms, interactions between program

and hardware, and finally interfaces between program

and external system. The system test and acceptance test

is out of scope of this paper.

Figure 2. Software Test Procedure

Fgire 2 shows the software test procedure that should

be performed in unit test and integration test.

4.1 Software Unit Test Strategy

The bottom-up testing sequence is adopted for pIAOS

and pOAOS unit test [6, 7]. That is, we test the program

from the bottom [8]. If the program has the structure as

shown in figure 3, the sequence of unit test is (E, C, F),

(B, D), (A).

Figure 3. The Structure of Example Software

The test items include all units (subprograms)

consisting of pIAOS and pOAOS and the testing

methodology used is the combination of white box and

black box test.

The test cases for testing each units are derived from

satisfying the multi-conditions coverage criteria, and a

boundary value analysis.

We stop the unit test when all the test cases execute

the without detecting errors.

4.2 Software Integration Test Strategy

The test item for integration test of pIAOS and

pOAOS includes the interface as follows:

� Interface between each units

� Interface with hardware components in AI/AO

module

� Interface with pCOS of processor module

The test cases are derived through the equivalence

partitioning method which is one of black box test

methodology. Test case design by equivalence

partitioning method proceeds in two steps:

� To identify the equivalence classes

� To define the test cases

We stop the integration test when all the test cases

execute the program without detecting errors.

5. Conclusion

This paper described the software testing strategy

which can find the errors effectively in the pIAOS and

pOAOS designed for implementation in analog input

module and analog output module respectively. The unit

test and integration test were performed according to the

proposed test strategy.

We found two errors in pIAOS through the unit and

integration test. We also find three errors in pOAOS.

The information about errors was reported to

software development team and QA team so that the

software may be redesigned.

REFERENCES

[1] KNICS-PLC-DS301, “Safety Grade PLC Design

Specification,” 2006.

[2] KNICS-PLC-SEP102, “Safety Grade PLC Software

Development Plan,” 2005.

[3] KNICS-PLC-SEP110, “Safety Grade PLC Software

Verification and Validation Plan,” 2005

[4] KNICS-PLC-SRS131-02, “Safety Grade PLC Analog

Input Module Software (pIAOS1) Requirement

Specification,” 2006.

[5] KNICS-PLC-SRS131-03, “Safety Grade PLC Analog

Ouput Module Software (pOAOS1) Requirement

Specification”

[6] KNICS-PLC-STP131-02, “Safety Grade PLC Analog

Input Module Software (pIAOS1) Component Test

Procedure,” 2006

[7] KNICS-PLC-STP131-03, “Safety Grade PLC Analog

Output Module Software (pOAOS1) Component Test

Procedure,” 2006

[8] Glenford J. Myers, “The Art of Software Testing,” John

Wiley & Sons, 2004.

Test Plan

Generation

Test Design

Generation

Test Case

Generation

Test Procedure

Generation

Test Execution

	분과별 논제 및 발표자

