
Software Development of RMS for HANARO Reactor by Using an Architectural Approach

Yong Suk Suh,a Seok Boong Hong,a Ki Sung Son,b Ki Hyun Lee,b Hyeon Soo Kim c

a I&C and HF Div., KAERI, 150 Dukjin-dong, Yuseong-gu, Daejon, Korea, 305-353, yssuh@kaeri.re.kr

b Control Tech. Research Inst., SEC Co., Ltd.,974-1 Goyeon-ri Woongchon-myon, Ulju-gun, Ulsan, Korea, 689-871

c Dept. of Computer Science and Eng., Chungnam Nat’l Univ., 220 Gung-dong, Yuseong-gu, Daejon, Korea, 305-764

1. Introduction

In KAERI, the project for updating the Radiation

Monitoring System (RMS) for HANARO was launched in

Nov. 2005 with a budget of 80 million won. The RMS

was originally developed with Santa Cruz Operation

(SCO) operating system and Dataview graphic system by

Victoreen in USA. At the time of the Y2k problem, it was

upgraded with Windows NT and Delphi by Visiontech in

Korea in order to overcome the problem [1]. In 2005,

when KAERI planed to construct a Fuel Test Loop (FTL)

facility and install 6 Local Monitoring Systems (LMS) for

the FTL inside HANARO, it was requested to update the

HANARO RMS since several operating problems and

maintenance difficulties had been reported. It has been

difficult to maintain 10 thousand lines of a source code

due to poor documentation and many dead codes in it.

The RMS consists of 30 LMSs, 5 Remote Monitoring

Terminals (RMTs). The LMSs are electrical class 1E and

the RMTs are Non-1E. The scope of the project is to

develop the RMTs since the LMS was supplied by

Victoreen. Actually, Korea has no company

manufacturing the LMS so the development project of

RMS in Korea is to develop the RMTs by importing the

LMSs from overseas.

There are two constraints imposed on the software

development for the RMTs: short period (6 months) and

low budget (60 million won). The user requirements for

the RMTs are summarized as follows:

“The upgraded system should function better than

the current system. No loss of data is allowed,

easily maintained and extended, and capable of

portability with radiation monitoring systems

which will be constructed in the future.”

In order to meet the requirements under the

constraints, it is necessary to find an efficient way for

the development. We considered adopting two

methods for it. The first method is a fast prototyping

with a minimal programming. The fast prototyping

was inevitable because the functional requirements

were not clearly fixed when the project was launched,

but simply stated that better functions were required.

For this reason, the prototyping is the best solution to

see what the user want. The second one is the

Attribute Driven Design Method (ADDM) [2]. The

ADDM leads us to perform the following procedures:

1) Elicit a quality goal from the requirements.

2) Construct an architecture to meet the goal.

3) Validate the architecture if the goal is achieved.

4) Refine the architecture if necessary and identify

the reusability of the architecture.

The ADDM requires the developers to concentrate

on the quality goal of the target before starting a

design. It is reasonable persuasion to avoid the failure

of project in case concentrating on programming. It

then requires building a system by seeing if it can

meet the goal. We considered all these activities as an

architectural approach to develop a system in this

paper. The approach we performed in the software

engineering process such as an analysis, design,

implement, and test, is described in the next section.

2. The Architectural Approach

The term “Architecture” is defined as “the art or

science of building” in the merriam-webster dictionary.

With the definition, we applied the ADDM to building the

RMS as described in the following subsections.

2.1 Quality goal and tactics

After analyzing the software development requirements,

quality goals are elicited from them as follows:

1) Functionality: better function than the current RMS.

2) Reliability: no loss of data is allowed.

3) Maintainability: complete within 24 hours.

4) Extendibility: easy addition of LMSs, RMTs, and

user interfaces.

5) Portability: portable with future RMS in KAERI.

In order to meet the quality goals, we decided to have

following tactics based on engineering experience:

1) Functionality: use of a prototyping as a means to

understand the functional requirements.

2) Reliability: construction of dual hot-standby systems.

3) Maintainability: loosely coupled modules and a

localization.

4) Extendibility: object-oriented design and programming.

5) Portability: use of open interface standards.

2.2 System Architecture

The architecture of the RMS was originally designed as

a distributed system with RS485/232C communications.

We changed the communication to Ethernet as shown in

Fig. 1. We can achieve the extendibility and portability

from the system architecture.

Transactions of the Korean Nuclear Society Spring Meeting
Chuncheon, Korea, May 25-26 2006

2.3 Server Architecture

The server architecture was designed with dual hot-

standby server systems as shown in Fig. 2 so that we can

achieve the reliability from the system architecture. The

server and the slave are synchronized at start-up time. The

master server synchronizes not only the real-time data but

also the historically logged data with the slave. They

communicate with each other with a heartbeat. When the

master fails, the slave becomes the master. When the

failed master comes back to join the LAN, it becomes the

slave. At this time the slave should catch-up with the

logged data of the master. This is done by the master.

2.4 Software Architecture

The software is developed with Adroit which is a tool

for building a SCADA (Supervisory Control and Data

Acquisition) [3]. The reason for selecting Adroit is due to

a low budget for the development and a minimization of

the programming effort so we can easily prototype the

user interfaces. The Adroit supports the object-oriented

design and client-server architecture as shown in Fig. 3.

We can easily define agents as classes and create tags as

instances of the agents without a programming. And then

we dynamically design graphic objects for user interfaces

and only assign the tags to the graphic objects. We can

achieve the maintainability and extendibility with the

Adroit.

The Adroit supports OPC (Object linking embedding

for Process Control) which is an internationally industrial

standard providing an open interface for exchanging data

dynamically between different manufacturers. In order to

communicate with Victoreen LMSs, we had to make a

driver program as a Windows DLL (Dynamic Link

Library) program and add it to the Adroit. We can achieve

the portability by using the OPC interface and the DLL

programming.

2.5 Validation of the Architecture

The architecture is being validated through testing.

Functionality is being iteratively validated by

demonstrating the prototype to the user and by performing

FAT (Factory Acceptance Testing). Reliability is being

validated by making the server fail and ensuring that no loss

of data occurs. Maintainability is being validated by making

any of the changes or faults and ensuring that they are fixed

within 24 hours. Extendibility is being validated by adding

LMSs, RMTs, and user interfaces. Portability is being

validated by communicating with other systems.

2.6 Reusability of Architecture

If the reusability of the system, the architecture, or the

software is achieved, they provide very valuable assets for

future projects. In the case of the RMS development, we

identified that the developed RMS itself can be reused for a

future project by simply changing tags and user interfaces.

3. Conclusion

With the constraints such as a short period of

development, low budget, and unfixed functional

requirements, it was necessary to find an efficient way of

developing the RMS software. For this, we adopted an

architectural approach and used the Adroit tool. While

performing the approach, the quality goal we elicited led

us to properly build the RMS architecture containing a

system, server, and software. We built the LAN-based

distributed system, dual hot-standby servers, and client-

server software architecture. We adopted an object-

oriented design concept for achieving a maintainability

and extendibility so that objects in clients and servers can

run independently with minimal interfaces. Using the

Adroit tool, we could prototype the system iteratively with

a minimal programming. The architectural approach

provided us with an efficient way to build and validate the

architecture per quality goals. We will reuse the

architecture for future RMS development.

REFERENCES

[1] KAERI/RR-2059/99, “Upgrade of RMS for Y2k Problems in

RX and related Building of HANARO”, KAERI, 2000.

[2] Len Bass, et al., Software Architecture in Practice, 2nd Ed.

Addison Wesley, 2003.

[3] www.adroit.co.za, www.bnftech.com

Master Server

 Agent Server

UDR Agent

RE002 Tag

RE041 Tag

LCU Agent

RE047 Tag

RMT Clients

 User Interface Display

RE002 Display

Graphic Object

RE041 Display

Graphic Object

RE047 Display

Graphic Object

Fig. 3 Software Architecture

Master

Server

time synchronization Slave

 Server

real-time data

heartbeat data

catch-up data

Log Log
Fig. 2 Server Architecture

LAN

LMS 1 RMT 1

LMS 30 Slave Server RMT 5

•
•
•

•
•
•

Fig. 1 System Architecture

Master Server

	분과별 논제 및 발표자

