Neutronic Characteristics of a Sodium-cooled Transmuter Charged with a Deep-Burn Discharge TRU Fuel

Ser Gi Hong and Yonghee Kim

Korea Atomic Energy Research Institute, 150 Duckjin-Dong, Yuseong-Gu, Daejon, 305-600, hongsg@kaeri.re.kr

1. Introduction

Fast spectrum reactors have several advantages in transmutation of the transuranic (TRU) nuclides : the nuclear fission produces more neutrons and the actinides have a higher fission-to-capture ratio than under a thermal spectrum. Meanwhile, General Atomics of the United States proposed a deep-burn concept, in which an ultra high burnup (over 60%) is pursued in order to incinerate the TRUs in a graphite-moderated, high-temperature, gas-cooled reactor (HTGR) without a costly repeated reprocessing and re-fabrication of spent TRU fuels.[1]. The deep-burn approach is based on the extremely high burnup potential of a ceramic-coated particulate fuel (TRISO). In HTGR, the graphite moderation produces valuable opportunities for thermal and epithermal neutrons to interact with fissionable and non-fissionable materials. HTGRs are allegedly known that a full TRU core is possible without compromising core safety features and thus a rapid TRU destruction is possible.

In this paper, a symbiosis of SFR and HTGR is considered and the neutronic characteristics of an SFR core charged with a TRU fuel from a deep-burn reactor (DBR). For a comparison purpose, a conventional TRUloaded SFR is also considered.

2. Core Design and Performance Analysis

2.1 Description of Core Design

In this paper, a 600MWe (1523.4MWt) sodiumcooled fast reactor is selected as a reference design. In this design, void duct assemblies and a central island of non-fuel assemblies are introduced to reduce the sodium coolant void reactivity and to achieve power flattening under a single enrichment fuel. Figure 1 shows the configuration of the core. The active core height is 80cm at cold state and the outer diameter of fuel rod is 7.5mm. A fuel assembly consists of 267 fuel rods and six Ca₃N₂ rods. A 30 cm thick B₄C region (50wt% B¹⁰) is placed below fuel to increase the neutron leakage. A uranium (U)-free fuel is considered to maximize the transmutation rate. The fuel form is TRU-W-28wt%Zr. Tungsten (W) [5,6] is introduced to improve the fuel Doppler effect because its temperature-dependent capture cross section ratios are similar to those of ²³⁸U and its capture resonances are located between a few keV and 100keV. The theoretical density (TD) of fuel is assumed to be 12.52g/cm³ and the smear density of 75%TD is used. Taking into account the fuel expansion, fuel density was reduced by a factor of 1.064.

Figure 1 Configuration of the core with void duct assemblies

2.2 Core Performance Analysis

A REBUS-3 equilibrium model with a nine group cross section was used to perform the core depletion analysis. The cycle length is 332EFPD (11EFPM) and the refueling interval is 13months with a capacity factor of 85%. A five batch fuel management scheme is used and a 14-month cooling time is assumed. Table I compares TRU vectors from DBR and LWR. In Table I, it is noted that the discharged fuel from DBR has higher contents of ²³⁸Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴³Am, ²⁴⁴Cm and a significantly lower content of ²³⁹Pu than the discharged fuel from LWR. Table II shows the summary of the core performance analysis results. From Table II, the followings are observed; 1) the core with a DBR feed composition (Design-I) has a much smaller (by ~1475pcm) reactivity swing than the core charged with a conventional LWR TRU (Design-II). This is because the feed composition of Design-I has a higher ²³⁸Pu and 242 Cm contents. The neutron capture of 238 Pu leads to 239 Pu and the alpha-decay (T_{1/2}=163day) of 242 Cm to ²³⁸Pu. 2) Design-II has a higher discharge burnup (by \sim 24%) than Design-I. This is because the discharged fuel from DBR has a smaller amount of fissile material than the one from LWR and so the Design-I core has a higher initial inventory of heavy metals. 3) The transmutation rates are almost the same for the two cores (~540kg/cycle). 4) The Design-II core has a more negative fuel Doppler coefficient than the Design-I core. This is due to the fact that the Design-II core has a higher content of Tungsten in fuel. 5) Design-I show a higher sodium void worth than Design-II. The relatively high sodium void worth in the two designs is due to the

fact that the Tungsten absorbs preferentially the low energy neutrons. That is to say, a spectrum hardening by a sodium coolant voiding leads to reduction of the neutron absorption. 6) The Design-I core has a higher value of delayed neutron fraction than the Design-I core because the delayed neutron is produced at lower energy (~500keV) and the Tungsten absorbs preferentially the low energy neutrons.

Table I Comparison of the feed fuel compositions			
Nuclides	DBR discharged fuel	LWR discharged fuel	
Np-237	4.94	6.76	
Pu-238	11.3	2.26	
Pu-239	3.89	50.79	
Pu-240	10.8	22.48	
Pu-241	20.4	4.34	
Pu-242	29.0	4.59	
Am-241	1.7	7.28	
Am-242m	0.1	0.02	
Am-243	9.0	1.20	
Cm-242	2.7	0.00	
Cm-243	0.08	0.00	
Cm-244	5.58	0.24	
Cm-245	0.4	0.03	
Cm-246	0.00	0.00	

Table I Comparison of the feed fuel compositions

Table II Core performance comparison

Parameters	Design-I	Design-II
Average discharge burnup (MWD/kg)	204.9	269.8
Burnup reactivity swing (pcm)	4718 (16.4\$)	6193 (26.2\$)
Average TRU conversion ratio	0.4891	0.3966
Peak fast neutron fluence (n/cm^2)	4.03×10^{23}	3.908x10 ²³
3D power peaking factor (BOEC/EOEC)	1.410/1.373	1.372/1.326
Average linear heat generation rate (W/cm)	233.4	233.4
Average volumetric power density (W/cc)	256.7	256.7
TRU consumption rate (kg/cycle)	546.5	543.8
Fuel Doppler coefficient (BOEC)	-6.63×10^{-7}	-1.04x10 ⁻⁶
Radial expansion reactivity coefficient (pcm/%, BOEC)	-645	-656
Axial expansion reactivity coefficient (pcm/%, BOEC)		
Fuel	-229	-199
Fuel + structure	-166	-156
Sodium void worth (\$)		
BOEC/EOEC	8.9/9.9	6.1/6.8
Effective delayed neutron fraction (BOEC)	0.00287	0.00236
Heavy metal (kg, BOEC)	11193	8249
W wt% in Heavy metal+W (BOEC)	9.58	33.33

3. Conclusion

The core performances of a sodium-cooled transmutater charged with a deep-burn discharge TRU fuel has been analyzed and compared with those of a conventional LWR TRU vector. The DBR discharged fuel feeding core has a much smaller burnup reactivity swing, a larger delayed neutron fraction but a smaller discharge burnup, a larger sodium void worth, and a less negative fuel Doppler coefficient than the LWR discharged fuel feeding core. The current study is based on an SFR design optimized for a LWR TRU feed. A core optimization is required for the DBR TRU feed case.

REFERENCES

[1] M. Richards et al., "DEEP BURN: Destruction of Nuclear Waste Using MHR Technology-Impacts on Spent Fuel Management", GLOBAL 2005, Tsukuba, Japan, Oct. 9-13, 2005.

[2] S. G. Hong, et al., "600MWe Sodium Cooled Fast Reactor Core Designs for Efficient TRU Transmutation," Proceedings of the KNS Spring Meeting, Chun-Cheon, Korea, Oct. 27-28, 2006.

[3] S. G. Hong, et al., Establishment of Gen IV Sodium Cooled Transmutation Nuclear Reactor Concept, KAERI/RR-2679/2006.

[4] S. G. Hong et al., "Neutronic Design Study of A TRU Transmutation Core using Void Duct Assemblies," Trans. Am. Nucl. Soc., **93**, 2006.

[5] N. Messaoudi and J. Tommasi, "Fast Burner Reactor Devoted to Minor Actinide Incineration," Nuclear Technology, 137, 84 (2002).

[6] A. Romano, Optimization of Actinide Transmutation in Innovative Lead Cooled Fast Reactors, Doctoral Thesis, MIT, May 16, 2003.