
A 1ST Step Integration of the Restructured MELCOR for the MIDAS Computer Code

S.H.Park a, D.H.Kim a, S.W.Cho b

a T/H Safety Research Division, KAERI, P.O.Box 105, Yusong, Daejon, 305-600 Korea, shpark2@kaeri.re.kr
b Korea Radiation Technology Institute Co. Kusongdong 19, Yusong, Daejon, 305-353 Korea

1. Introduction

KAERI is developing a localized severe accident code,
MIDAS, based on MELCOR. MELCOR uses pointer
variables for a fixed-size storage management to save the
data. It passes data through two depths, its meaning is not
understandable by variable itself. So it is needed to
understand the methods for data passing. This method
deteriorates the readability, maintainability and portability
of the code.

As a most important process for a localized severe
accident analysis code, it is needed convenient method for
data handling. So, it has been used the new features in
FORTRAN90 such as a dynamic allocation for the
restructuring[1]. The restructuring of the data saving and
transferring method of the existing code makes it easy to
understand the code. Before an entire restructuring of the
code, a restructuring for each package was developed and
tested. And then integration of each restructured package
was being processed one by one.

In this paper, the integrating scope includes the BUR,
CF, CVH, DCH, EDF, ESF, MP, SPR, TF and TP
packages. As most of them use data within each package
and a few packages share data with other packages. The
verification was done through comparing the results
before and after the restructuring.

2. Description Existing Data Structure

The MELCOR code is composed of three parts:
MELGEN which checks the input data and makes the data
file called restart needed for the calculation, MELCOR
which calculates with time by using the restart file and
makes a log/plot file, and the PLOT-related programs.

At first the data saving and transfer method is
analyzed[2]. Through this process, arrays for four data
types (real, integer, logical, and character) are read /
written for each package.

MELCOR reserved and used four data types for the
data storage and transfer effectively. Data are saved in the
most effective way within a fixed array and they are
transferred through two steps. During these processes,
pointer variables are applied differently according to the
packages, and they point out a specific location among the
database.

 The contents that the pointer variables convey can be
searched in the subroutines within the packages. Based on
these contents, module is constructed for each package.
Also some data were found to be referenced in other
packages besides their own packages.

3. Restructuring Steps

Before an entire integrating of the code, a restructuring
for an simple package was developed and expanded into
the entire MELCOR code[3,4]. The new features in
FORTRAN90 such as a dynamic allocation were used for
code restructuring. The data transfer structures were
modularized from a single array into a derived data type
for an easy understanding and usage. Also the variables
used in the restructured packages were transformed into a
modularized type, and their efficiency was increased
through a dynamic allocation. And special program named
MeltoMid was made and used to minimize manual job,
which helps automatic conversion of variables in
subroutines[5].

3.1 Construction of the Module
In MELCOR, the subroutines, connect the pointer

variables with the next level subroutines. These next level
subroutines then apply the actual-meaning variables
instead of the pointer variables. In the restructured and
integrated packages, these pointer variables were removed
by using the module which was constructed based on the
analysis of the pointer variable’s usage.

3.2 Subroutine Reorganization
In advance of the restructuring of the subroutines, the

whole existing MELCOR code written in FORTRAN77
was transferred into FORTRAN90. The results before and
after the conversion were found to be the same.

In the next step, a restructuring of each package was
done. In the newly constructed module, all the variables
were transformed into direct variables which have a
meaning related the package.

The direct variables are used instead of the local
variables which are calculated with pointer variables and
are passed through an argument.

Lastly, the execution files for each package
BURMELCOR, CFMELCOR, MPMELCOR,
TPMELCOR, etc., were made.

3.3 Integration of Restructured Packages
The integrating process for MIDAS was done from

simple packages to complicated packages. At present,
BUR, CF, CVH, DCH, EDF, ESF, MP, SPR, TF and TP
packages are integrated. Within them, the data for some
packages was shared in many other packages. So, some
parts of subroutines in their packages were changed
according restructured modules. Later, the whole
packages will be integrated.

4. Result and Verification

In order to verify the new results, a three-step process
was implemented. At first, a simple language conversion

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, November 2-3, 2006

1/2

process from FORTRAN77 to FORTRAN90 was checked
by comparing major variables in all the packages before
and after the conversion. The values of the major
variables were the same. Therefore the language
conversion was confirmed to be successful.

The next step was to verify the new results against the
results in the first step. As each package was restructured
using the module and the derived type variables, the
interface program was developed for the data
communication between the restructured package and the
original packages. The execution files such as
BURMELCOR, CFMELCOR, MPMELCOR,
TPMELCOR were processed by using the data created at
the first step. Also, a temporary program was made for the
comparison of the values between the restructured
variables and the original values. It provided the same
values for the restructured variables through a read/write
processing.

The final step, which was the main part here, was to
verify the results of the execution file named MIDAS and
the results created at the second step. The restructured
packages were included into MIDAS. From figure 1 to 2 it
is shown comparison of subroutine during restructuring
process. As shown in Figure 3 to 4, the integrated results
were the same as the package-wised results.

5. Conclusions

 To restructure the data storage, the data management
process was analyzed for the entire MELCOR code. In
this procedure, the data structure was restructured to
remove the pointer variables through the FORTRAN90
features such as the MODULE and USE statements.

Using the reconstructed modules, the subroutines in the
target packages were restructured. By comparing the
important variables, it was confirmed that the results were
the same but differences appeared in the CPU time
comparison. They are supposed to be caused by an array
transformation in some subroutines. Based on the various
results, the output of various executing results, and
consulting other experiences, it has been confirmed that
the integration of restructuring was done right.
 Therefore, the propriety of the integrating was verified.
Through the integrating process, the base was constructed
for an easy grasp of the variables everywhere in the code
and it became easy for a code improvement and for an
addition of new models. The integrating process proposed
in this paper will be extended to the entire code for the
MIDAS development.

REFERENCES

[1] A Multi-Dimensional Thermal-Hydraulic System
Analysis Code, MARS 1.3.1, Vol.31, Number 3,
pp.344-363, June 1999.

[2] D.H.Kim, S.H.Park, Analysis of MELCOR Code
Structure, KAERI/TR-1543/00, June, 2000.

[3] D.H.Kim, et al., Experimental and Analytical Research
on Severe Accident Phenomena, KAERI/RR-
2216/2001, May, 2002.

[4] S.H.Park, D.H.Kim, S.W.Cho, A Restructuring of the
CAV and FDI Package for the MIDAS Computer
Code, Proceedings of the Korean Nuclear Spring
Meeting, May, 2006.

[5] Y.M.Song, S.H.Park, D.H.Kim, Development of a
Computer Program for Automatic Variable
Conversion in MELCOR Code, Proceedings of the
Korean Nuclear Autumn Meeting, 2000.

!
!! edit of the ICS model if active
 IF (IVICPL (1) .NE.0) THEN
! WRITE (NOW,304) ABS(NMIC), (ICVNUM(IVICPL(I)),I=1,NMIC)
 WRITE (NOW,304) ABS(ESF_NMIC),(ICVNUM(IVICPL(I)),I=1,ESF_NMIC)
 WRITE (NOW, 504)
 WRITE (NOW,305) ICVNUM(IVICDN),ICVNUM(IVICSO),ICVNUM(IVICVN), &
 ESF_ELVICT,ESF_VNTICN,ESF_VNTICD, &
 ESF_VOLIC,ESF_PFICMX,IILTMP,IICNCN,IICDPR

!
!! edit of the ICS model if active
 IF (IVICPL (1) .NE.0) THEN
! WRITE (NOW,304) ABS(NMIC), (ICVNUM(IVICPL(I)),I=1,NMIC)
 WRITE (NOW,304) ABS(ESF_NMIC),(CVH_VL(IVICPL(I))%ICVNUM, &
 I=1,ESF_NMIC)
 WRITE (NOW, 504)
! WRITE (NOW,305) ICVNUM(IVICDN),ICVNUM(IVICSO),ICVNUM(IVICVN), &
 WRITE (NOW,305) CVH_VL(IVICDN)%ICVNUM, CVH_VL(IVICSO)%ICVNUM, &
 CVH_VL(IVICVN)%ICVNUM,&
 ESF_ELVICT,ESF_VNTICN,ESF_VNTICD, &
 ESF_VOLIC,ESF_PFICMX,IILTMP,IICNCN,IICDPR

Figure 1. Subroutine CNDEDT in restructuring of ESF Figure 2. Subroutine CNDEDTin MIDAS Integration (1st step)

Figure 3. Pressure in Upper Plenum
- MIDAS -

Figure 4. Pressure in Upper Plenum
- Restructuring CVH package only -

2/2

	분과별 논제 및 발표자

