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1. Introduction 

 
Recently, a hexagonal module has been equipped to 

the DeCART (Deterministic Core Analysis based on 

Ray Tracing) whole core code for a hexagonal core 

analysis [1]. The equipment includes a ray tracing 

module to solve the 2-D whole-core transport problem 

and a multi-group CMFD module to perform an 

efficient transport calculation. In this paper, the 

capability of the DeCART hexagonal module is 

examined by solving VHTR core problems.  

 

2. Methods and Results 

 

The VHTR core uses helium as a coolant which is 

realized as a void hole in a neutronics calculation. This 

void hole has no influence in the MOC transport 

calculation, but it brings about a near singular matrix for 

a CMFD formulation. Therefore, how to manipulate this 

problem is described first in this section and then the 

computational results of the DeCART code for the 

VHTR core are compared with the MCNP code. 

 

2.1 Lumped CMR scheme 

 

CMFD module solves the following equation for the 

acceleration of the ray tracing transport calculation.  
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Where D̂  is a current corrective coefficient which is 

determined from the transport solution, and D
~
 is the 

coupling coefficient of the FDM which is defined as: 
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The void problem occurs when two or more than two 

void cells are grouped. In a void cell, the diffusion 

constant and β are nearly infinite. Therefore, if a void 
cell is adjacent to another void cell, sD

~
 at the interface 

between the void cells is also nearly infinite so that a 

nearly singular matrix is produced. However, if a void 

cell exists alone, sD
~
 is close to the β value of the 

adjacent non-void cell, which produces a normal matrix. 

The nearly singular matrix converges very slowly and 

degrades the calculation performance of the CMFD 

module.  

For an efficient calculation of the nearly singular 

matrix, a lumped coarse mesh rebalance (LCMR) 

scheme is applied to the void cell group. The LCMR 

equation can be derived by summing Eq. (1) over all the 

cells of a void group. For a simplicity, Eq. (1) can be 

rewritten as: 
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In the LCMR scheme, the shape of the cell averaged 

flux for a void cell group is assumed to be invariant 

during the CMFD calculation and determined only by 

the transport calculation. Then, the cell averaged flux at 

the (n+1)-th iteration can be written by the lumped 

rebalancing factor and the cell averaged flux at the n-th 

iteration as: 
ninni f ,11, φφ ++ = .   (3) 

By inserting Eq. (3) to Eq. (2) and summing all the cells 

of a void group after moving the non-infinite terms of 

the left hand side (LHR) to the right hand side (RHS), 

the following equation can be obtained. 
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The summation term of the LHS in Eq. (4) is same as 

the RHS at the n-th iteration. Therefore, the lumped 

rebalancing factor at the (n+1)-th iteration can be 

determined simply by dividing the RHS at the (n+1)-th 

iteration by that at the n-th iteration. 

The linear system of the CMFD formulation does not 

converge if the LCMR scheme is applied because Eqs. 

(3) and (4) for the void cells do not solve the CMFD 

equation of Eq. (1) and only produce an approximated 

solution. Therefore, when applying the LCMR to the 

CMFD linear system, the CMFD calculation should be 

stopped if the residual error does not reduce any more, 

and then moved to the next MOC calculation to update 

the flux shape of a void group. 

 

2.2 Benchmark Problems 

 

The hexagonal module of the DeCART code is 

examined for three types of assembly block problems 

and one 2-D whole core problem for the VHTR core 

(Fig. 1). The void hole exists in most of the problems 

except for BLOCK-1 and is modeled by the regular 

hexagonal cell. Therefore, in the case of a void hole, 

there exist not only fully voided cells but also partly 

voided cells in the graphite matrix. The partly voided 

cell is modeled to use the homogenized material which 

is indicated by GRPH2 in Fig. 1. In the core problem, 

DeCART models the core boundary by surrounding the 

graphite assembly while MCNP models the core barrel 
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explicitly. The double heterogeneity in the fuel compact 

is simplified by the RPT [2] theory and by using the 

HELIOS code for the BLOCK-1 300 K problem. The 

solutions of the DeCART code are obtained by using 

the 190G library for the assembly problems and the 47G 

library for the core problems, and compared with those 

of the MCNP and HELIOS codes. For the ray option, 

0.05 cm for the ray spacing and 2 azimuthal and 2 polar 

angles in the 30° and 90° sectors are used. 

 

 
(a) BLOCK-1                     (b) BLOCK-3 

 

 
(c) BLOCK-3 

 

 
(d) 2-D CORE 

 

Figure 1. Benchmark Problems for VHTR Core. 

 

Table 1 and Fig. 2 show the computational results. 

DeCART shows less than 100 pcm errors for the 

assembly problems and less than 600 pcm errors for the 

core problems. The reason why the core problem shows 

a large eigenvalue error is mainly due to the cross 

section library, which is examined in an in-house 

comparison. In the radial power distribution, DeCART 

shows a very good agreement with the MCNP showing 

less than a 0.5 % error. 

For the computing time, DeCART takes about 3 

minutes for the BLOCK-1 and BLOCK-3 sextant 

assembly problems and about 15 minutes for the 

BLOCK-2 full assembly problem. In the 2-D core 

problem, DeCART takes less than 5 hours on a 

PENTIUM-IV 3.0 GHz personal computer. 

 

Table 1. Eigenvalue Comparison 

Problem Codes Param 300 K 600 K 900 K 

MCNP K-inf 1.53112 1.48272 1.44922 

HELIOS ∆ρ, pcm 0 124 111 BLOCK-1 

DeCART ∆ρ, pcm -98 -8 -43 

MCNP K-inf 1.53382 1.48853 1.45417 

HELIOS ∆ρ, pcm 87 91 127 BLOCK-3 

DeCART ∆ρ, pcm -8 -27 -13 

MCNP K-inf 1.54717 1.50096 1.46770 

HELIOS ∆ρ, pcm 35 128 149 BLOCK-2 

DeCART ∆ρ, pcm -51 20 20 

MCNP K-eff 1.43657 1.41004 1.38729 2-D 

CORE DeCART ∆ρ, pcm 327 542 599 

* Standard Deviation (σ) is less than 0.00051 

 

 
Figure 2. Radial Power Comparison at 300 K 

 

3. Conclusion 

 

The hexagonal module equipped in the DeCART 

code was examined for VHTR problems. During the 

examination, a nearly singular problem due to a void 

cell group occurred and was resolved by applying the 

LCMR scheme. The computation results indicated that 

the hexagonal module of the DeCART code worked 

very well by showing a good solution within an 

affordable computing time. 
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