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1. Introduction 

 
Recently, the DeCART (Deterministic Core Analysis 

based on Ray Tracing)[1] code equips the hexagonal 

transport kernel which solves the heterogeneous 

hexagonal core problem by the MOC transport equation. 

Also, the multi-group CMFD module is equipped to 

obtain the transport solution efficiently. In this paper, 

some features included in the MOC and CMFD modules 

are described first, and then the acceleration 

performance of the CMFD module is examined. 

 

2. Methods and Results 

 

2.1 Ray Tracing Features 

 

The hexagonal transport kernel implemented into the 

DeCART code solves the MOC equation by the 

modular ray tracing scheme based on a hexagonal 

assembly and by a path linking scheme between the 

modular rays. Therefore, the requirements for the 

modular ray include a complete construction capability 

for a core ray by a path linking and a complete 

reflection capability to another ray at the core boundary. 

The path linking requirement is achieved by adjusting 

the ray angle and the ray spacing from the input values. 

If α~  and A
~

∆  are given for the ray angle and the ray 

spacing for α~ <60° from the input file, then the number 

of modular rays passing through surface 1 and surface 2 

of Fig. 1 are calculated as: 
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Here, P means the side length of the hexagonal 

assembly. By using the determined ray numbers of n1 

and n2, the adjusted angle and the ray spacing meeting 

the path linking requirements are given as: 
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With the above adjusted ray angle and the ray spacing, 

the number of rays passing through surface 3 can be 

obtained easily from the n1 and n2 as: 

213 nnn +=                                 (3) 

DeCART uses Eq. (1) and (2) to determine the ray 

angles in the angle range of [0,30°]. The other reflective 

angles to meet the complete reflection requirements are 

determined as: 
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Where 1α  is an angle determined from Eq. (2) in the 

angle range of [0,30°]. 
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Figure 1. Modular Rays. 

 

2.2 CMFD Acceleration 

 

The CMFD module solves the multi-group problem 

which keeps the same energy group structure as the 

transport problem. This CMFD module is designed to 

solve an unstructured cell to treat an irregular geometry 

for the gap region of an assembly boundary.  

The net current in the CMFD formulation can be 

written as: 
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Where D̂  is a current corrective coefficient which is 

determined from the transport solution, and D
~

 is the 

coupling coefficient determined from the conventional 

finite difference method (FDM). When solving the 

hexagonal core by applying FDM only, how to define 

D
~

 wholly governs the solution accuracy. Therefore, in 

this case, D
~

 should be defined carefully for the 

accuracy of the computational results. However, in the 

CMFD formulation, the definition of D
~

 is not that 

important because the net current is finally adjusted to 

the transport solution by D̂ . Therefore, in the DeCART 

code, D
~

 is approximately defined by using the length 

of the perpendicular line from a cell’s center point. 

 

2.3 Benchmark Results 

 

The acceleration performance of the CMFD module 

is examined for the single pin, the single assembly and 

the core problems. The reflective boundary condition is 

used for the first two problems and the vacuum 

boundary condition is applied to the last problem. The 

cross sections are taken from the C5G7 benchmark 

problem which was proposed for testing the ability of a 

modern deterministic code for a rectangular core. Fig. 2 
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shows the problems solved in this paper. For the ray 

option, 0.05 cm for the ray spacing and 2 azimuthal and 

2 polar angles in the 30° and 90° sectors are used. In the 

performance examination, the residual error which is 

defined by the difference between the neutron source 

and the loss terms based on a homogenized cell is used. 

The absolute eigenvalue error is also used to determine 

the convergence of the calculation. 

 

 
Figure 2. Benchmark Problems and Modeling 

 

Fig. 3 shows the CMFD performance in the aspect of 

the iteration number. The two values in the parenthesis 

of Fig. 3 mean the number of outer iterations and the 

eigenvalue error. The number of iterations when 

applying the MOC ray tracing alone is dependent on the 

problem size, showing 53 iterations for the pin cell 

problem, 78 iterations for the assembly problem and 

more than 500 iterations for the core problem. However, 

when accelerated by the CMFD module, the 

dependency on the problem size is considerably reduced, 

showing less than 8 iterations for all the problems. The 

speedup for the number of iterations turned out to be 

about 10 for the pin and the assembly problems, and 

about 200 for the core problem. 

Fig.4 shows the computational time breakup. Though 

applying the CMFD acceleration, most of the computing 

time is required for the MOC transport calculation, and 

the CMFD module uses less than 10 % of the total 

computing time. The computing time for the MOC 

transport calculation is proportional to the number of 

outer iterations. The total computing time required for 

the core problem in the case of the CMFD acceleration 

is less than about 8 minutes, which indicates the 

applicability of the DeCART hexagonal version to a 

realistic core problem by using the multi-group cross 

section library. 
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Figure 3. Residual Errors with the Outer Iterations 

 

Table 1. Computing Time Breakup 

( PENTIUM-IV M 733 1.6 GHz, sec ) 

Problem Cal. MOC CMFD Etc. Total 

Pin MOC - - - 0.89 

 MOC/CMFD 0.05 0.00 0.14 0.19 

Assy. MOC - - - 61.0 

 MOC/CMFD 5.3 0.1 1.7 7.1 

Core MOC - - - >90000 

 MOC/CMFD 417 24 13 454 

 

3. Conclusion 

 

In this paper, the hexagonal modules including the 

MOC transport calculation module and the CMFD 

acceleration module were implemented into the 

DeCART code. The CMFD accelerated the MOC 

transport calculation reduced about 10 times for the pin 

and assembly problems and about 200 times for the core 

problem in both the total computing time and the 

number of outer iterations. Therefore, it is concluded 

that a whole core transport calculation for a hexagonal 

core is achievable with an affordable computing time by 

using the CMFD acceleration. 
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