# Fabrication of UO<sub>2+x</sub> single crystal rods

Jae Ho Yang\*, Young Woo Rhee, Dong-Joo Kim, Jong Heon Kim, Ki Won Kang, Keon Sik Kim

Advanced LWR Fuel Development, Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon-si 305-600, Korea

## 1. Introduction

This paper deals with the reduction of pellet-sized  $U_3O_8$  to  $UO_2$  at 1300°C, and we find out that columnar and equiaxed grains, which are similar to the as-cast microstructure [1] resulting from solidification, are formed in the reduced  $UO_2$  pellet. This paper also describes the grain structure evolution during the reduction experiments in various reducing gases with different oxygen partial pressures. The single crystal rods could be obtained by heat-treating the as-cast like structure  $UO_2$  pellets

#### 2. Experimental

The  $U_3O_8$  powder was obtained by oxidation of ADU-UO<sub>2</sub> powder at 400°C in air. The  $U_3O_8$  phase formation was identified by X-ray diffraction. The green pellet samples of U<sub>3</sub>O<sub>8</sub> were prepared by pressing the  $U_3O_8$  powder under a pressure of 3 t/cm<sup>2</sup>. Upon heating of the green pellet to 1300°C at a rate of 5K/min in air, it was sintered to a dense U<sub>3</sub>O<sub>8-x</sub> pellet. When the temperature of the specimen reached 1300°C, the isothermal reduction of the U3O8-x pellets was conducted in the reducing gas atmospheres of H<sub>2</sub>, Ar and  $CO_2$ , respectively. The microstructure of the  $UO_2$ pellet produced by the TGA experiments was examined by an optical microscope and SEM. The polished section of the sintered pellets and the mechanically fractured sample were prepared for an optical microscope and SEM, respectively. The rod-type UO<sub>2</sub> single crystals are obtained by annealing the reduced UO<sub>2</sub> pellets. The separated single crystal rods were examined by SEM.

#### 3. Results

The  $U_3O_8$  green pellet was heated to 1300°C at a rate of 5K/min in air and dwelled for a few minutes. And then it was isothermally reduced in a H<sub>2</sub> atmosphere. Fig. 1 shows the SEM micrograph of the grain morphology at the fractured surface of a reduced sample pellet. The photo of the center shows the complete microstructure of the pellet. The grain structure of the reduced pellet is quite different from that of the normal grain pellet. At the periphery of the pellet, the layer consisting of equiaxed grains is formed. Inside of this layer, the grains grow into the pellet center and form a columnar grain structure. In the center, fine and equiaxed grains are developed. These overall features closely resemble the as-cast structure formed during the solidification of liquid under thermal gradient. That is, the as-cast structure develops during a solid-state reduction of the  $U_3O_{8-x}$  pellet.



Fig. 1. The SEM images from the fractured surface of pellet obtained by reducing the  $U_3O_8$  sintered pellet at 1300°C in  $H_2$  atmosphere.

In order to examine the influence of the oxygen potential of the reducing gas atmospheres on microstructure evolution of U<sub>3</sub>O<sub>8</sub> pellet, three different gases, H<sub>2</sub>, Ar and CO<sub>2</sub>, have been used for the reducing gases. Fig. 2 shows the optical micrographs of the reduced pellets. It can be readily seen that the equiaxed grains at the surface and the columnar grains at the interior are quite different depending on the reducing gases. In the pellet reduced in  $H_2$ , the equiaxed grain is very small compared to those in the other gases. The equiaxed grain size seems to be consistent with the width of columnar grains, which suggests that the UO<sub>2</sub> grains are formed in a random orientation at the surface and then certain favorably-oriented grains at the UO<sub>2</sub>/U<sub>3</sub>O<sub>8</sub> interface begin to grow inward. The columnar grains grow directionally and the interface between two adjacent columnar grains is almost flat. The columnar grain size is small in H<sub>2</sub>, while the columnar grain size of the pellets reduced in CO2 and Ar becomes large up to 100 µm wide and 1000 µm long.



Fig. 2. Optical microstructure at the chill and columnar zone for reduced pellets.

(a)  $H_2$  (b) Ar (c)  $CO_2$  (d) normal  $UO_2$  pellet

Fig. 3 shows the rod shape  $UO_2$  single crystals obtained by heat treating the reduced  $UO_2$  pellet in  $H_2$  atmosphere. The grains in columnar zone are separated into individual single crystal bars. The clusters of equiaxed grains are also shown.



Fig. 3. SEM image or rod shape UO<sub>2</sub> single crystals

# 3. Conclusion

The experimental result shows that it possible to tailor the grain size or grain texture of the UO<sub>2</sub> pellets simply by changing the oxygen partial pressure of the reducing gas atmosphere during the reduction of  $U_3O_8$  pellets. This method has a potential for applications such as the fabrication of single crystals UO<sub>2</sub> or textured UO<sub>2</sub> pellets etc.[2-4].

# Acknowledgements

This study has been carried out under the Nuclear R&D Program by MOST (Ministry of Science and Technology) in Korea.

# REFERENCES

[1] H. Biloni and W.J. Boettinger in: R.W. Cahn and P. Hassen(Eds.), Physical Metallurgy, North-Holland Physics Publishing, Amsterdam, 669 (1996)

[2] D. Kolberg, F. Wastin, J. Rebizant, P. Boulet, G.H. Lander and J. Schoenes, Phys. Rev. B, 66 (2002) 214418.

- [3] M.R. Castell, Phys. Rev. B, 68 (2003) 235411.
- [4] Z. Shen, J. Liu, J. Grins, M. Nygren, P. Wang, Y. Kan, H. Yan and U. Sutter, Adv. Mater., 17 (2005) 676-680