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1. Introduction 
 

The Monte Carlo (MC) method for particle transport 

is a special numerical method to calculate the expected 

values of various nuclear parameters statistically from 

the results of stochastic simulations of particle kinetics. 

The MC calculation is capable of estimating the real 

nuclear parameters with precise three-dimensional 

geometry input and continuous energy cross-section 

libraries. However a large number of particles should be 

simulated to obtain the average values with small 

statistical uncertainties and it takes lots of computing 

time proportional to the number of the particles. 

In spite of growth in computing power, the drastic 

increase in number of sources to achieve 1% statistics 

on local pin powers makes it hard to apply the MC 

method to the nuclear core analysis. 

The objective of this paper is to efficiently estimate 

the pin power peaking factor (PPPF) of the nuclear core 

by the variance reduction techniques of 

splitting/Russian roulette [1]. 

 

2. Methods and Results 
 

2.1 PPPF Estimation by Splitting/Russian Roulette 

 

The maximum pin power is usually found in the one 

of several fuel assemblies (FA’s) having larger assembly 

powers than the others. The assembly powers can be 

estimated by the MC calculations on the small number 

of sources to achieve 1% statistics. 

Therefore it is efficient for the PPPF prediction to 

estimate the precise pin powers for only the several 

high-power assemblies that can be determined by the 

preceding MC calculations on the small number of 

histories. And the splitting/Russian roulette technique 

can be used to control the particle population in the 

important FA’s that have high assembly powers. 

In the MC track length estimator, the pin power is 

estimated by summing the power responses to the 

particle tracks generated at the pin. And these tracks 

must be induced from the particles moving into the FA 

including the pin and the source particle generated at the 

FA. 

The particle population is controlled for the high-

power assembly of importance I as below. 

 

(1) When a particle of weight W moves into the FA of 

importance I from the FA of importance I ′  
( I I′ < ), the particle is split into [ ]I I ξ′ +  

particles which weights are W I I′⋅ . ξ is a random 

number on [0,1) and [x] means the largest integer 

less than or equal to x. 

(2) When a particle of weight W leaves the FA of 

importance I to the FA of importance I ′  ( I I′ < ), 

Russian roulette is played and the particle is killed 

with probability of ( )1 I I′− , or followed further 

with probability I I′  and weight W I I ′⋅ . 

(3) When a source particle of weight W is generated at 

the FA of importance I, the source particle is split 

into [ ]I ξ+  particles which weights are W I . 

 

(1) and (2) schemes are the same as the geometry 

splitting/Russian roulette technique [2]. 

 

2.2 Variance of Estimated Pin Power 
 

In the normal Monte Carlo eigenvalue calculations, 

the variance of the pin power denoted by Q, [ ]2 Qσ  can 

be expressed as 

   [ ] [ ] [ ]( )22 2

i i
Q Q E Q E Qσ σ  = = −

 
.        (1) 

Qi is the pin power estimated from i-th fission source.  

Qi can be expressed by the summation of the pin 

power contributions of the particles moving into or 

generated at the FA including the pin. 

                 i ij

j

Q q=∑                            (2) 

qij is the pin power calculated from j-th particle moving 

into or generated at the FA while simulating i-th fission 

source. 

qij has the statistical error, δij from the expected value, 

q0ij. 

                 
0ji ij ij

q q δ= +               (3) 

Using equations (2) and (3), Eq. (1) can be written as 
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∑ ∑
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.  (4) 

Because the statistical error, δij is independent of the 
other statistical errors and [ ]0ijj

q E Q−∑ , Eq. (4) can 

be written as 

        [ ] [ ]2 2 2

0i i ij

j

Q Qσ σ σ δ = +  ∑ .            (5) 

0 0i ijj
Q q=∑ . 
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For the MC eigenvalue calculations conducted with 

the active cycle number of N on the fission source 

number per cycle of M, the mean value of the pin power, 

Q  can be calculated by 

                 
1

1 NM

i

i

Q Q
NM =

= ∑ .              (6) 

From Eq. (5), the sample variance of Q  in the normal 

MC calculations, 
2

S Qσ     can be written as 

[ ]2 2 2

0

1 1
S i ij

j

Q Q
NM NM

σ σ σ δ   = +    ∑ .     (7) 

When I is set to the importance of the FA including 

the target pin in the splitting/Russian roulette 

calculations, j-th particle moving into or generated at 

the FA from i-th fission source is simulated I times 

changing the sequence of random numbers. And these 

repeated simulations reduces δij of Eq. (3) as 

                ( ) 0

1

1 I

ij ij ijk
k

q q
I

δ
=

= −∑ .              (8) 

( )ij k
q  is the pin power from k-th replica of j-th particle 

moving into or generated at the FA from i-th fission 

source. 

From the substitution of Eq. (8) into Eq. (5), the 

variance of Qi in the splitting/Russian roulette 

calculations, [ ]2

VR i
Qσ  can be expressed as 

      [ ] [ ]2 2 2

0

1
VR i i ij

j

Q Q
I

σ σ σ δ = +  ∑ .          (9) 

From Eq. (9), 
2

,S VR Qσ     becomes 

[ ]2 2 2

, 0

1 1 1
S VR i ij

j

Q Q
NM NM I

σ σ σ δ   = + ⋅    ∑ .   (10) 

Comparing equations (7) and (10), one can find that 

the 
2

ij NMσ δ  ∑ term is reduced by 1 I  in the 

splitting/Russian roulette calculations. 

 

2.3 Application Results 
 

The effectiveness of the splitting/Russian roulette 

techniques for the radial PPPF estimation is examined 

by the MCCARD [3] analysis for the SMART core [4]. 

The normal MC eigenvalue calculations were 

conducted with 1,000 active cycles changing the 

number of fission sources per cycle. Table 1 shows the 

relative error, R of the maximum pin power and the 

average Figure of Merit (FOM) of pin powers in the 

center FA. R is defined to be one estimated standard 

deviation divided by the estimated mean value and 

FOM is defined by  

2

1
FOM

R T
= .                            (11) 

T is the computing time. For a fixed computing time, the 

smaller the variance the larger the FOM. 

The splitting/Russian roulette calculations were 

conducted with 1,000 active cycles on 1,000 sources per 

cycle changing the importance of the center FA. Table 2 

shows the FOM’s for the splitting/Russian roulette 

calculations. From the table, one can observe that the 

average FOM with the importance of 100 is about 7 

times as large as the one of the normal MC calculations. 

From Eq. (10), R
2
 can be expressed as a function of I, 

2 1

1 2
R C C I −= + .                        (12) 

C1 and C2 are constant values for the SMART core 

problem. And the computing time, T can be expressed 

as the sum of time to simulate particles at FA’s with the 

importance of 1 and time for the center FA with the 

importance of I that must be proportional to I. 

3 4
T C C I= +                          (13) 

From equations (12) and (13), FOM can be written as 

( ) ( )1

1 2 3 4

1
FOM

C C I C C I−
=

+ ⋅ +
.         (14) 

Figure 1 shows the FOM trend according to the 

importance values in the splitting/Russian roulette 

calculations. We can observe that the measured FOM’s 

perfectly match with the fitting curve by Eq. (14). 
 

Table 1 Relative Error of the maximum pin power 

without splitting/Russian roulette 

Number of 

sources per 

cycle, M 

Rel. Err. 

of max. pin 

power 

FOM 

of max. pin 

power 

Avg. FOM* 
CPU time  

(min.) 

1,000 0.03978 32.6 59.8 19.4 

10,000 0.01261 32.9 60.5 190.9 

100,000 0.00392 33.8 60.6 1927.3 

* Average over FOM’s of pin powers in the center assembly 
 

Table 2 Relative Error of the maximum pin power with 

splitting/Russian roulette 

Importance 

of the center 

FA , I 

Rel. Err. 

of max. pin 

power 

FOM 

of max. pin 

power 

Avg. FOM* 
CPU time  

(min.) 

10 0.01372 249.4 332.9 21.3 

100 0.00710 460.2 423.0 43.1 

1000 0.00682 83.8 86.3 256.5 

* Average over FOM’s of pin powers in the center assembly 
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Figure 1. FOM according to the FA importance 
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3. Conclusion 
 

We have applied the splitting/Russian roulette 

techniques to estimate the PPPF of the SMART core 

problem. From the numerical results, we observed their 

effectiveness in FOM. In particular, we derived the 

variance equation about the importance value for the 

splitting/Russian roulette calculations and it was helpful 

to analyze the FOM behavior according to the 

importance value. 
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