Thermophysical properties of a H₂SO₄-H₂O binary system for a VHTR-assisted SI thermochemical cycle

Jiwoon Jang, Youngjoon Shin, Heeseung Shin, Yunhee Lee, Kiyoung Lee, Jonghwa Chang Korea Atomic Energy Research Institute 150 Dukjin-dong, Yuseong-gu, Daejeon, Korea 305-600 E-mail;jwjang73@kaeri.re.kr, Tel; +82 42 868 4703, Fax; +82 42 868 8549

1. Introduction

The sulfur-iodine(SI) cycle and the Westinghouse sulfur hybrid cycle coupled to a very high temperature gas-cooled reactor(VHTR) are well known as a feasible technology to produce hydrogen.[1]

The concentration of the sulfuric acid solution and its decomposition are essential parts in both cycles.

In this paper, several thermophysical correlations for the H_2SO_4 and H_2O binary chemical system have been developed to apply to the dynamic analysis of a sulfuric acid concentrator. Based on the data in Perry's chemical engineers' hand book[2] and other experimental data[3, 4], not only the boiling point but also the latent heat of the sulfuric acid solution have been correlated as a function of the sulfuric acid concentration.

On the other hand, partial pressure equations of water, sulfuric acid, and sulfur trioxides have been obtained as functions of the sulfuric acid concentration and temperature, respectively. The equations introduced in our paper can be applied in the range of a 0 to 100% sulfuric acid concentration and until 3 MPa.

2. Thermophysical Properties

The SigmaPlot(Ver. 9.0) was used to develop the correlation equations and graph results. The best fitted equations were selected from the library of SigmaPlot(Ver. 9.0).

2.1 Boiling Point

In order to create a boiling point equation as a function of the total pressure and sulfuric acid concentration, the following equation was selected.

$T_b = A + B \exp(C \log_{10} P)$	(1)
A 3 1 2 1 1	(0)

$A=a_1 x^3 + b_1 x^2 + c_1 x + d_1$	(2)
$B=a_{2}x^{3}+b_{2}x^{2}+c_{2}x+d_{2}$	(3)

$$C = a_3 x^3 + b_3 x^2 + c_3 x + d_3$$
(3)

where T_b : boiling point(K) P : total pressure(bar) X : weight fraction a_i, b_i, c_i, d_i : coefficients

By using the P-T data published in Perry's chemical engineer's hand book[1], the coefficients for eqs. (1)-(4) were determined as a follows.

Table 1. Coefficients in boining point equation		
Coefficient	wt% H_2SO_4 (10 ~ 98)	wt% H_2SO_4 (98.5 ~ 100)
a1	-16.83	19639993.82
b1	42.29	-58371430.06
\mathbf{c}_1	-48.11	57825487.65
d_1	242.23	-19093861.03
a2	546.80	-4398598.20
b ₂	-453.67	12711928.43
c ₂	189.69	-12237110.38
d ₂	116.78	3924138.44
a3	0.08	26895.60
b3	-0.39	-79999.50
c ₃	0.03	79313.18
d3	0.51	-26209.12

Table 1. Coefficients in boiling point equation

2.2 Azeotrope

By using equation (1) and table (1), the boiling points as a function of the sulfuric acid concentration at the given total pressures can be drawn, and then we can establish the azeotrope points at $dT_b/dx = 0$. Table 2 shows a comparison of the calculated values to experimental values.

Total pressure (mmHg)	Experimental (wt, % H ₂ SO ₄)	Calculated (wt, % H ₂ SO ₄)	RE(%)
100	98.790	98.745	0.046
200	98.704	98.711	0.010
300	98.645	98.694	0.041
400	98.597	98.685	0.081
500	98.557	98.677	0.115
600	98.524	98.670	0.144
650	98.509	98.666	0.156
700	98.495	98.663	0.171
750	98.482	98.663	0.184
800	98.469	98.658	0.192
850	98.457	98.657	0.203
900	98.446	98.656	0.213
950	98.436	98.653	0.220
1000	98.426	98.650	0.228

Table 2. Azeotropes of the H₂SO₄-H₂O system

2.3 Latent Heat

The vaporization latent heat of the sulfuric acid solution was correlated with a sulfuric acid concentration by the following polynomial form.

$$L_v = 1364.93x^3 - 1226.46x^2 + 382.23x + 540.52$$
 (5)

Where, L_v : latent heat(cal/g)

 $x : H_2SO_4$ weight fraction

Fig. 1 shows that the calculated values agree with the experimental data within a $\pm 5\%$ relative error.

Fig. 1. Vaporization latent heat as a function of sulfuric acid concentration.

2.4 Partial Pressures of H₂O, H₂SO₄, and SO₃

The partial pressure of each compound in a H_2SO_4 - H_2O system was reported in Perry's chemical engineers' hand book.[2] Based on this data, the correlation equation for the partial pressure of each compound has been obtained as follows.

$$Log_{10} p_{i} = A_{i} + B_{i}/T + C_{i}/T^{2}$$
(6)

$$A_{i} = a_{i1} x^{3} + b_{i1} x^{2} + c_{i1} x + d_{i1}$$
(7)

$$B_{i} = a_{i2} x^{3} + b_{i2} x^{2} + c_{i2} x + d_{i2}$$
(8)

$$C_i = a_{i3} x + b_{i3} x + c_{i3} x + d_{i3}$$
 (9)

Where p_i : partial pressure of i component(bar) T : temperature(K) subscript i=1: H₂O, 2:H₂SO₄, 3:SO₃

Table 2. Coefficients in partial pressure equation

Coefficient	${ m H}_2{ m SO}_4{ m wt.}$ fraction	H ₂ SO ₄ wt. fraction
coefficient	$(0.1 \sim 0.8)$	$(0.85 \sim 1)$
a ₁₁	-10.799	-4.43.5
b11	-15.149	11105.8
c ₁₁	-4.732	-10150.1
d ₁₁	4.888	3091.96
a ₁₂	8238.490	756055
b ₁₂	-12356.600	-2130840
c ₁₂	3869.240	1989900
d ₁₂	-1569.430	-618436
a ₁₃	-79287.2	-135190000
b13	-1010110	381414000
c ₁₃	3223960	-357427000
d ₁₃	-2617210	111085000
a ₂₁	31.666	540.247
b ₂₁	-66.997	-1506.138
c ₂₁	35.734	1394.101
d ₂₁	3.253	-423.157
a ₂₂	-16283.992	-384340.297
b ₂₂	37689.985	1070172.953
c ₂₂	-17333.649	-987107.436

d ₂₂	-5449.468	298191.121
a ₂₃	2077331.396	75724576.026
b ₂₃	-4855012.753	-213488350.450
c ₂₃	2793566.387	199869224.799
d ₂₃	-415939.310	-62285697.275
a ₃₁	34.816	4472.295
b ₃₁	-73.363	-12305.921
c ₃₁	37.657	11264.483
d ₃₁	6.194	-3422.469
a ₃₂	-17078.737	-1054957.067
b ₃₂	41488.475	2966364.333
c ₃₂	-18459.508	-2762554.915
d ₃₂	-8981.487	846531.102
a33	2928089.353	195340326.508
b33	-6043040.412	-552130876.293
c ₃₃	3148707.844	518209632.367
d33	-277843.706	-161479604.936

3. Conclusion

The correlations of the boiling point, azeotrope, latent heat, total and partial pressures in a H_2SO_4 - H_2O binary system have been obtained as a function of the sulfuric acid concentration.

The boiling point equation correlated with the total pressure and sulfuric acid concentration agrees with the data published in Perry's hand book within a $\pm 5\%$ relative error. The azeotropes estimated from the boiling point curves are almost the same as experimental data within a $\pm 0.5\%$ relative error.

Partial pressures of H_2O , SO_3 , and H_2SO_4 are predicted within a 10% relative error. The error of the partial pressure value is increased by increasing the temperature and sulfuric acid concentration.

REFERENCES

[1]Brown LC, Besenbruch GE, Lentsch RD, Schultz KR, Funk JF, Pickard PS, Marshall AC, Showalter SK. High efficiency generation of hydrogen using nuclear power. 2003; GA-A24285.

[2]Robert Perry and Don W. Green, Perry's chemical engineers' hand book. 7th edition, McGraw Hill company Inc, 1999.

[3]Kunzler JE, Absolute sulfuric acid, a highly accurate primary standard. Analytical chemistry, Vol. 25, 100(1953).

[4]Gmitro and Vermeulen, Vapor pressures, normal boiling points, and latent heats of vaporization for aqueous solutions of H_2SO_4 . Am. Inst. Chem. Engrs. J., Vol. 10, 741(1964).