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1. Introduction 

 
Recently, the lattice Boltzmann method(LBM) has 

gained much attention for its ability to simulate fluid 

flows, and for its potential advantages over conventional 

CFD method. The key advantages of LBM are, (1) 

suitability for parallel computations, (2) absence of the 

need to solve the time-consuming Poisson equation for a 

pressure, and (3) an ease with multiphase flows, 

complex geometries and interfacial dynamics may be 

treated[1]. In spite of its success in solving various 

challenging problems involving athermal fluids, the 

LBM has not been able to handle realistic thermal fluids 

with a satisfaction. The difficulty encountered in the 

thermal LBM seems to be the numerical instabilities.  

The existing thermal lattice Boltzmann models may 

be classified into three categories based on their 

approach in solving the Boltzmann equation, namely, 

the multispeed, the passive scalar and the thermal 

energy distribution approach. For more details see Ref. 

[2].  

In the present work, the hybrid thermal lattice 

Boltzmann scheme proposed by Lallemand and Luo[2] 

is used for simulating a natural convection in a square 

cavity. They proposed a hybrid thermal lattice 

Boltzmann equation(HTLBE) in which the mass and 

momentum conservation equations are solved by using 

the multiple-relaxation-time(MRT) model, whereas the 

diffusion-advection equations for the temperature are 

solved separately by using finite-difference technique. 

The main objective of the present work is to establish 

the lattice Boltzmann method as a viable tool for the 

simulation of temperature fields at high Rayleigh 

numbers.      

 

2. Methods and Results 

 

2.1 LBM with MRT model 

Lallemand and Luo[3] have defined a new column 

vector of macroscopic variables  and R  can be related 

to the column vector of 

TfffffffffF ),,,,,,,,( 876543210= as follows : 

FMR =     (1) 

where M  is a 9x9 matrix transformation F to R . In 

the column vector R , ρ  is the fluid density, ε  is 

related to the square of the energy e , xj  and yj  are 

the mass flux in two directions, and xxp and xyp  

correspond to the diagonal and off-diagonal component 

of the viscous stress tensor respectively. One immediate 

advantage of the MRT model is that macroscopic 

variables of interest can be obtained readily by simply 

performing the matrix multiplication FM  if F  is 

known. In addition, due to the conservation of the mass 

and momentum before and after a particle collision, the 

total mass and momentum should not relax at all. 

Physically speaking, different physical modes should 

have different relaxation rates. By taking this into 

account in the MRT model, the collision procedure for 

*R is performed as follows : 

 )(* eq

RRSRR −−=     (2) 

where * denotes the post-collision state, S is the 

9x9 diagonal matrix, which will be shown later. In S , 

0641 === sss  enforces the mass and momentum 

concervation before and after a collision. Before the 

stream step, Eq. (2), is performed, one needs to 

transform the post-collision values, 
*R , back to 

*F by 

using Eq. (3) as 

)(
1

*
1

* eq

RRSMFRMF −−==
−−

 (3) 

where S is the diagonal matrix. 

),,,0,,0,,,0( 987532 ssssssdiagS =  

Finally, the streaming step for all the 
if ’s in the 

MRT model is performed exactly the same as in the 

standard LBGK model . 

Lallemand and Luo[3] have shown that the MRT 

model can reproduce the same viscosity as that by a 

single-relaxation-time(SRT) model if we set 

τ/198 == ss . Once this is decided, the rest of the 

relaxation parameters(
532 ,, sss and 

7s ) for different 

physical modes can then be chosen more flexibly. It is 

worthy to note that the MRT model reduces to the SRT 

model by simply setting 

 The lattice Boltzmann equation can include external 

fields, such as gravity. For a forcing F, one can simply 

add it to the momentum, by jtFj →+ δ [6]. 

 

2.2 Hybrid thermal model 

 

The spurious mode coupling and numerical instability 

in the energy-conserving LBE models cannot be 

overcome by increasing the number of discrete 

velocities or including higher order terms in the 

equilibria. However, the athermal LBE models do not 

have such problems. Therefore, the best approach to 

formulate a TLBE model is to treat the energy-

T

xyxxyyxx ppqjqjeR ),,,,,,,( ,ερ=

τ/1987532 ====== ssssss
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conservation equation separately from the mass and 

momentum conservation equations. This means that the 

lattice Boltzmann equation is used to simulate the mass 

and momentum conservation laws, and a finite-

difference scheme is used to solve the diffusion-

advection equation for the temperature. 

The temperature T evolves according to the standard 

diffusion-advection equation, 

TTuTt ∆=∇⋅+∂ κ    (4) 

where κ  is the thermal diffusivity.  

 

2.3 Simulations 

 

The D2Q9 HTLBE model is used to simulate the 

convective flows in a square cavity with two opposite 

vertical walls at different temperatures. For the lattice 

Boltzmann part, the bounce-back boundary conditions 

are applied for the four walls. As  for the temperature, 

two opposite vertical walls are maintained with constant 

temperatures –T0 and +T0, respectively. And the other 

two walls are adiabatic. The gravitation is pointing 

downward. The Rayleigh number Ra is defined as 

νκ

β 3

02 NgT
Ra =    (5) 

where g is the gravitational acceleration, β  is the 

coefficient of a thermal expansion, and N is the lattice 

units. Two effective Nusselt numbers are defined for the 

flow. The effective local Nusselt number Nuw is defined 

by the temperature gradient at the wall maintained at a 

constant temperature : 

0

0
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=∑∂= x

y

xw T
T

Nu    (6) 

The effective(area) averaged Nusselt number Nuv is 

defined as 

1
2

1
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xv Tu
NT
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κ

  (7) 

where Pr)/( νκ = is thermal diffusivity.  

 

2.4 Results 

 

Results from the HTLBE models are compared with 

those of the N-S solvers by de Vahl Davis[4](Figure 1). 

It is clearly shown that the difference of the average 

Nusselt numbers between the current study and de Vahl 

Davis[4] is very small. Generally, the overall flow 

structures (streamlines, temperatures) predicted by the 

HTLBE models are very similar to those predicted by 

de Vahl Davis[4]. As the Rayleigh number increases, 

the solution becomes time dependent. We have found 

that for Pr=0.71, and a square cavity of size 450x450, 

transition to time dependency takes place at 

Ra=1.8x10
8
[5].  
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Figure 1. Comparison with averaged Nusselt numbers.  

 

3. Conclusion 

 

Simulations of flow and temperature fields that arise 

due to a natural convection in a square cavity have been 

carried out by using the hybrid thermal LBE methods. 

This numerical scheme is able to capture the velocity 

and temperature gradients accurately. Results for both 

are in good agreement with those using the N-S solver 

for Ra=10
3
~10

6
[4]. Also, we have found that the 

transition to turbulence takes place at Ra~1.8x10
8
. 
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