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1. Introduction 

 
Korea Electric Power Research Institute (KEPRI) has 

been developed the non-loss-of-coolant accident (non-

LOCA) analysis methodology, called as the Korea Non-

LOCA Analysis Package (KNAP), for the typical 

Optimized Power Reactor 1000 (OPR1000) plants. 

Considering current licensing methodology conducted by 

ABB-CE, however, the KNAP could be applied to 

Advanced Power Reactor 1400 (APR1400) also. In spite 

of some difference in design concepts of two plant types, 

there is a close resemblance between their nuclear steam 

supply systems (NSSS). So, in this study, the rod ejection 

accident (REA) event was analyzed using KNAP hot spot 

model (HSM) for APR1400 to estimate the feasibility of 

the application and the results were compared with those 

given in APR1400 Standard Safety Analysis Report 

(SSAR), which were calculated using the CESEC-III and 

STRIKIN-II code of ABB-CE. Through the study, it was 

concluded that the KNAP could be applicable to 

APR1400 on the view point of REA. 

 

2. Plant Modeling 

 

2.1 Reactor Coolant System Modeling 

 

Prior to analysis, the reactor coolant system (RCS) of 

object plants, APR1400, was modeled with several 

volumes and junctions to simulate the accident. The core 

was partitioned into 6 vertical volumes and 2 separated 

hydraulic channels, respectively. In the case of steam 

generators, tubes and secondary sides were modeled with 

12 and 14 volumes, respectively, to represent the U-tube 

bundles and two feedwater-paths or economizer. In fact, 

the standard RCS model for OPR1000 used in the KNAP 

had been applied to the object plants with minor changes 

considering the characteristics of them. 

 

2.2 Hot Spot Modeling 

 

Based on the review over the STRIKIN-II model of 

APR1400, the average and hot spot channel model 

presenting the fuel assemblies were developed. To reflect 

the characteristic of the STRIKIN-II model, the hot spot 

channel was divided up to 25 meshes of 0.5 ft height in 

axial direction and 17 segments in radial direction.  
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Fig. 1 RETRAN nodal diagram for APR1400 

 

 

3. Rod Ejection Accident Analysis 

 

   The REA is classified as an ANS plant condition IV 

incident due to the extremely rare probability and 

catastrophic consequence. The safety criteria of the 

accident, on the viewpoints of system responses, are the 

average fuel enthalpy, the maximum fuel temperature, the 

peak RCS pressures, and the cladding temperature. Any 

other limitations are covered with these criteria.  

 

The conditions led to REA would be classified into 4 

cases, such as hot zero power (HZP) at the beginning of 

cycle (BOC), hot full power (HFP) at BOC, HZP at the  

end of cycle (EOC), and HFP at EOC. In this study, 

however, two cases, i.e., HFP and HZP, were selected to 

confirm the applicability of KNAP to APR1400.  

 

Table 1. Initial Conditions for REA Analysis  
Parameter Value 

Core power Level, MWt 4062.66 

Core Inlet Coolant Temp. oF 563.0 

Core Mass Flowrate, 106lbm/hr 153.52 

Pressurizer Pressure, psia 2,175 

Delayed Neutron fraction, β 0.00412 

Moderator Temperature Coefficient, ∆ρ/ oF 0.0 

Ejected CEA Worth, 10-2 ∆ρ 0.11 

Total SCRAM Worth, 10-2 ∆ρ -6.0 

Postulated CEA Ejection Time, sec 0.05 

Maximum Peaking factor 2.63 

 

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, November 2-3, 2006

1/2



To compare the results of this study with those 

mentioned in SSAR, which are calculated with CESEC-III 

and STRIKIN-II codes, the same initial conditions and 

assumptions were used. Most of them were quoted from 

the SSAR. As given at table 2, the trends of the transients 

are similar figures each other. 

 

Table 2. Sequence Comparison  
SSAR RETRAN 

Event 
Time Value Time Value 

CEA Ejection 0.0  0.0  

Reactor Trip 0.045  0.045  

Max. Power, % 0.1 135.2 0.09 133.9 

Turbine Trip 0.595  0.596  

Max. Fuel Temp., oF 3.5 4,769.8 3.53 4,692.4 

 

As mentioned in the figure 2 the calculated power from 

HSM show the similar trends to those mentioned in SSAR. 

And it would be found that the power fractions of the hot 

spot were jumped to about 355% of the initial power, 

although the overall powers were risen up to about 135% 

in the case of the average channel. 

 

In the case of the fuel temperature, the temperature was 

calculated through the heat conductors used to represent 

the fuel assemblies and the maximum was the temperature 

of the most inner node. Despite of little difference, the 

results show the similar trends to those in SSAR as 

depicted in figure 3. 
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Figure 2. Power Trends     Figure 3. Max. Fuel Temp. 

 

Figure 4 and 5 show the pressurizer and steam generator 

shell side pressure, respectively. The results of RETRAN 

show somewhat different trends due to the comprehensive 

non-equilibrium pressurizer and multi-node steam 

generator secondary side models. On a standpoint of 

variation, however, they show the similar trends each 

other. 
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Figure 4. PZR Press.         Figure 5. SG Shell Press. 

 

4. Conclusion 

 

The REA was analyzed to estimated the feasibility of 

the KNAP application to APR1400. The results of the 

analysis were compared with those mentioned in SSAR, 

which are calculated by CESEC-III or STRIKIN-II code 

of ABB-CE. Through the feasibility study, it was 

concluded that the KNAP application showed the 

acceptable results and could be used further works. 
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