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1. Introduction 

 
With an increasing computing power, Monte Carlo 

(MC) neutronics codes have been widely used to 

analyze various nuclear systems. In order to conduct 

MC eigenvalue calculations for keff estimations, code 

users have to specify the numbers of inactive cycles, 

active cycles and neutron histories per cycle in input 

files. The number of inactive cycles can be determined 

after or, in the middle of a running by using recent 

works on the convergence diagnostics of a fission 

source distribution (FSD) [1,2]. The purpose of this 

paper is to investigate the best numbers for active cycles 

and neutron histories per cycle with a given total 

number of neutron histories to minimize variance biases 

of the estimations. 

 

2. Minimization of Variance Bias 

 

2.1 Formulation of a Real Variance 

 

For an MC eigenvalue calculation conducted with N 

active cycles on M neutron histories per cycle, Qi means 

an estimation of a tally denoted by Q at active cycle i. 
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Qij is a Q estimation from the j-th neutron history at 

active cycle i. 

Then the tally estimation over the N  active cycles, Q  

can be calculated by 
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From a formulation of the variance bias derived by 

Ueki et al [3], the real variance of Q , 2 Qσ  
   can be 

written as 
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And the inter-cycle covariance between Qi and Qi+t, 

[ ]cov ,
i i t
Q Q +  can be expressed with that of FSD’s as [4] 
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S (m=1, …, Nm) is the FSD of the m-th region at active 

cycle i, defined by ( )
m
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R  denotes the Q 

contribution from a unit fission source in the m-th 

region, defined by 
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Suppose that the active cycle calculation starts after 

many inactive cycle ones which are enough to make a 

converged FSD. Then using the cycle-by-cycle error 

propagation model [5] and the direct posterior 

estimation method for the stochastic error’s covariance 

[6], cov ,
i i t

m mS S
+
′    in Eq. (4) can be expressed as 

[ ]
0 1 1

, ,

0 1 1

cov , cov ,

1
cov , ,

m m

m m

N N
i i t i i t

m m mn m n n n

i n n

N N
i i l

mn m n n j n j

i n n

S S a a

a a
M

ε ε

ε ε

∞
′ ′+ +

′ ′ ′ ′
′ ′= = =

∞
′ ′+

′ ′ ′
′ ′= = =

  = 

 =  

∑∑∑

∑∑∑
 (6) 

( ) ( )
, ,

1 1

, ,

cov ,

.

n j n j

i i i i i i

n j n n j n
E S E S S E S

ε ε ′

− −
′ ′

  

    = − ⋅ −     
S S

   (7) 

i

mn
a is the m-th row and n-th column element of the 

matrix A
i
 where the matrix A is defined by 
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H and S0 denote the fission matrix and the main mode 

fission source distribution. k0 is the main mode 

eigenvalue. εn is the stochastic error at region n. 
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Using Eqs. (1), (4) and (6), 2 Qσ  
   of Eq. (3) can be 

written as 
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( )( )B N NM  in Eq. (9) is a difference between the 

real and apparent variance, called the variance bias. 

B(N) means the variance bias independent of the total 

number of neutron histories, NM. 

 

2.2 Zero Variance Bias 

 

From Eqs. (9) and (10), we can see that the variance 

bias depends only on B(N) when the total number of 

neutron histories is fixed as NM and B(N) is governed 

by the number of active cycles, N. 

When N=n in Eq. (10), B(n) can be written as 
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When N=n+1, B(n+1) can be written as 
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Subtracting Eq. (12) from Eq. (13), B(n+1) - B(n) can 

be written as 
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Assuming that 0 ( 1,2, )
t
C t> = L  because successive 

Qi are positively correlated [7], B(n+1) > B(n). This 

means that the greater the number of active cycle is, the 

larger the variance bias becomes.  

Especially when N=1, the variance bias becomes zero 

from Eq. (10). This means that the apparent variance 

becomes equal to the real variance when the total 

neutron histories are assigned to a single active cycle 

and the number of active cycles is set to 1. 

 

2.3 Test Results 

 

Behavior of the variance bias according to the active 

cycle number was studied for the fuel storage facility 

problem [8]. Figure 1 shows the 
2

( ) ijB N Qσ     

calculated by using a fission matrix and power 

responses for the (1,3) assembly built from an MC 

eigenvalue calculation with 100,000,000 neutron 

histories. From Figure 1, we can observe that the 

amount of variance bias becomes larger as the number 

of active cycles is increased. 
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Figure 1. Variance bias according to number of active cycles 

for fission power tally of the (1,3) assembly 

 

3. Conclusion 

 

A formulation about the relationship between the 

variance bias and the number of active cycles has been 

developed from recent works on the estimation of a real 

variance. From the formulation, we can see that the 

variance bias becomes zero when the number of active 

cycles is 1. 
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