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1. Introduction 

 
There are many deterministic techniques to solve 

heat transfer problems. However, they are difficult to 
deal with problems having complex geometry. Because 
Monte Carlo method deals well with complicated 
geometries, it could be used to deal with such heat 
transfer problems. 

Heat conduction is a diffusion process with the 
governing differential equation under no absorption, no 
fission and one speed condition [1, 2]. That is, the 
steady state differential equation of heat conduction for 
a stationary, isotropic solid is given by [1] 

( ) ( ) ( ) 0,K r T r q r′′′∇ ⋅ ∇ + =
r r r            (1) 

where ( )K rr =thermal conductivity, ( )q r′′′ r =internal 
heat source. On the other hand, the steady state, one-
speed neutron diffusion equation under isotropic 
scattering, no absorption, and no fission condition is 
given by [2] 

1 ( ) ( ) 0,
3 s

r S rφ∇ ⋅ ∇ + =
∑

r r                   (2) 

where φ =neutron flux, sΣ =scattering cross section, 
S=internal neutron source. 

While neutron diffusion is an approximation of 
neutron transport phenomena, inversely it is applicable 
to solve diffusion problems by a transport method, with 

1
3 ( )s K r

∑ = r  and S q′′′= . 

Based on this idea, a Monte Carlo method of solving 
heat conduction problems was developed [3] which 
employs the MCNP code since MCNP is widely used as 
a Monte Carlo particle transport code [4]. However, it 
is not convenient to apply linear extrapolation near the 
boundary. To circumvent this inconvenience, an 
improved treatment using extended boundary for the 
boundary correction is introduced in this paper. 
 

2. Limitation of Previous Method 
 

The procedure of the method using linear 
extrapolation near the boundary follows [3]. First, find 
proper linear extrapolation point based on the smallest 
error. Second, translate MCNP result to the boundary 
condition value.  

However, this method has a complicated procedure. 
The linear extrapolation point having the smallest error 
depends on the problem size so that it may be 
inconvenient to apply this method to real problems. 

 
3. Improved Method for Heat Conduction Problems 

 
The concept of the improved method using MCNP 

code is to extend boundary (of thickness τ ) like the 
extrapolation distance. The reason why this extended 
boundary is used to solve heat conduction is because 
the transport solution is not met with diffusion solution 
near the boundary. Therefore, using the extended 
boundary, it gives effect that transport solution raised 
up near the boundary and this method is easy to handle. 
The detail procedure follows. 

First, β , which is scaling factor [3], is chosen. This 
value determines how diffusivity of the problem that we 
solve. When β is increased, the problem becomes 
diffusive. Using larger β , differences between analytic 
solution and transport result obtained by using MCNP 
code become small, but the computing time is increased 
so that it is very important to find suitable β .  

Because of this reason, α , problem size in terms of 
mean free path, is introduced as [3]: 

                         
3

L
K
βα =                               (3) 

This parameter is dimensionless. β is called scaling 
factor [3], K is thermal conductivity and L is the size of 
the problem. Based on this parameter, β  is chosen and 
heat conduction problems can be solved by the MCNP 
code. The dependency of α is shown in Fig. 1. 
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Fig. 1.  MCNP results with q′′′ =10, K=0.5, depending 
on α , spherical one-dimensional problem, extended 
boundary distance used with 3, 2, and 1mfp 
respectively. 
 

Second, it is required to determine the extended 
boundary. The relationship between the extended 
boundary and relative error between analytic solution 
and MCNP result are shown in Fig. 2.  
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Fig. 2. The relationship between extended boundary 
distances and relative error in the problems with α =10, 
q′′′ =10, 0.5K = , spherical one-dimensional problem. 
 
Table 1: Extended boundary distances and computing 
time for Fig. 2. 

Extended boundary distance (mfp) Computing time (sec)
0 61 

0.5 69 
1 78 
2 94 
4 137 

 
The errors corresponding to each extended boundary 

were remarkably decreased up to 1mfp. However, the 
errors decrease little beyond 1mfp, but the computing 
time increases significantly beyond 1mfp. Therefore, in 
the view of effectiveness (relative error, time), 
τ = 1mfp extended boundary thickness was chosen. 

Finally, it is necessary to translate MCNP result to 
the boundary condition value. 

 
4. Comparison of Numerical Results in Problem 

Having Complex Geometry 
 
    The test problem is described in Table 1. The 
α values are 7 and 10. The heat source was distributed 
uniformly as q′′′ =10(w/cm3). The boundary condition 
was used as ( 10) 273T r K= = . The geometry is 
spherical one-dimensional as in Fig. 3. 
 
Table 2: Test Problem Description 

     
 
 

 
Fig. 3. Test  

Problem    
                                                          Description 

 
 

The differences between analytic solution and MCNP 
result are shown in Fig. 4. 
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Fig. 4. Comparison of improved methods and analytic 
solution for spherical one-dimensional problem. 
 
The black line is analytic solution. The green dots stand 
for α =7. In the α =7 case, the computing time is 
303sec in the parallel computation with 4 CPUs 
(3.2GHz). Also the red dots stand for α =10. In this 
case, the computing time is 326sec under the same 
condition. In heterogeneous problems, K to be used for 
the purpose of assessing α  in Eq. (3) is provided by 
the volume averaged heat conductivity, which is given 
by 

,i i

i

V K
K

V
= ∑
∑

                            (4) 

due to media with different thermal conductivities. It is 
confirmed that when α is large, the accuracy was 
increased. On the other hand, it required longer 
computing time in order to obtain accurate result. 
 

5. Conclusions 
 

The previous method to solve heat conduction 
problem uses a complicated procedure of linear 
extrapolation near the boundary. The improved method, 
which uses extended boundary, was introduced to solve 
heat conduction problems in complicated geometry. 
Using the improved method, it is confirmed that the 
results of MCNP and analytic solutions are in close 
agreement. 
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Medium R(cm) K(thermal 
conductivity) 

1 0<r<2 0.2 
2 2<r<4 0.3 
3 4<r<6 0.4 
4 6<r<10 0.5 
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