IPS Seismic Analysis with Modified Y-Piece

J. M. Lee, B. S. Sim, C.Y. Lee, S. H. Ahn, H. R. Kim

HANARO Utilization Technology Division, 3-Pin Fuel Test Loop R&D Department, Korea Atomic Energy Research Institute, P. O. B 105, Yuseong, Daejeon, 305-353

jmlee@kaeri.re.kr

1. Introduction

For the operation and maintenance works of In-Chimney in HANARO, the bottom of Y-piece supporting the IPS had been cut-off by 100mm, Ref. [1], as shown in Fig. 1. This modification needs for the additional finite element calculation following an earlier study, Ref. [2], which showed the seismic analysis.

Fig. 1 Modified Support Structure (Y-Piece)

2. Input Parameters

2.1 FE Model

Modified model includes the effect of the fuel basket on the support structure and Support tube which changed its dimensions. Table 1 show that parameters.

Table	1	Modified	mode	ling
-------	---	----------	------	------

Parts	Previous	Modified
Support tube ID/OD	83/120 mm	92/120 mm
Support tube length	400 mm	300 mm
Added mass of Fuel Basket	-	120 kg

IPS seismic model is shown in Fig. 2. Element type is S4R and CONN3D2.

2.2 Response Spectrum Method

The required inputs are SSE with 2% damping and OBE with 1% damping. Following the guidelines in Ref. [3], the procedure used is:

- Combination of the direction SRSS
- Combination of the modes 10% method

Fig. 2 Extent of IPS Seismic Model

3. Results

3.1 Natural Frequency Results

Table 2 gives the results of the natural frequency analysis for both model cases for the significant modes below 100 Hz by listing the mode frequencies and participating masses.

Table 2 Natural Frequency Results

Mode	Natural F	requency	Participating mass (kg)		
	Previous	Modified	Х	Y	Z
1	11.6	11.5	2	2	100
2	11.6	11.6	99	0	2
3	26.5	26.6	0	181	0
4	27.2	27.5	1	0	0
5	29.8	29.9	1	491	8
7	33.3	33.0	0	16	1
10	44.1	44.9	65	0	2
11	44.6	45.5	0	16	22
12	55.4	55.9	344	7	29
Last	93.3	93.3	33	802	50
Total	-	-	546	1516	215

This result follows from the fractions of total mass which participate in modes up to 100 Hz and these are 25% in X, 70% in Y and 10% in Z (the total model mass is 2153 kg). Fig. 3 shows the deflected shape for the first two modes and Fig 4 shows modes 3 and 5 which are the modes with significant vertical moment.

Fig. 3 First Two Vibration Modes (Freq. 11.6 Hz)

Fig. 4 Vibration Modes 3 and 5 (26.6 Hz and 29.9 Hz)

3.2 Seismic Results for Deflection

Table 3 gives the results of the seismic response analysis for the peak deflection at the position of the top of the IR-1 Flow Tube. Maximum deflection 1.0 mm (SSE) and 0.9 mm (OBE) are well within the allowable limit 3.2 mm.

Table 3 Seismic results for deflection

Maximum Deflection	SSE	OBE
At position of flow tube (mm)	1.0	0.9
At lower bracket support (mm)	1.3	1.1
Maximum deflection (mm)	4.8	4.2

4. Conclusion

- 1. Modified Y-Piece and added mass of Fuel Basket does not cause substantial changes to the IPS natural frequency.
- 2. Reduction in Y-Piece length does not impact on maximum displacement of the IPS at the point of IR-1 Flow Tube.

REFERENCES

[1] Y-Piece Cutting, HAN-FL-400-PB-002, Rev.0, 27 December 2006.

[2] Seismic Analysis of the KAERI IPS with Lower Bracket Support. HAN-FL-E-310-RT-R002, Rev.1 Appendix G, 26 May 2006.

[3] ABAQUS v6.4 User Manuals, ABAQUS Inc., 2003