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1. Introduction 

The safety related sensors of nuclear power 

plant are redundant.  Redundant sensor-systems 

achieve fault tolerance by duplication of 

components. It increases the ability of systems to 

interact with their environment by combining 

independent sensor readings into logical 

representations. Sensor integration of highly 

redundant systems offers these advantages: 1) 

Multiple inaccurate sensors can cost less than a 

few accurate sensors; 2) Sensor reliability may 

increase; 3) Sensor efficiency and performance 

can be enhanced; 4) Self-calibration can be 

attained. But the feasibility of the systems 

requires attention be paid to both reliability 

bounds and cost. Several on-line monitoring 

techniques have been developed that calculate the 

parameter estimate using only the measurements 

from a group of redundant instrument channels. 

These techniques are commonly referred to as 

redundant sensor calibration monitoring models. 
In this paper, we reduced  the dimensionality of 

redundant sensor data using principal component 

analysis. 

 

 

2. Principal Component Analysis 

 

Principal Component Analysis (PCA) is a 

method used to reduce the dimensionality of an 

input space without losing a significant amount of 

information (variability).  The method also 

makes the transformed vectors orthogonal and 

uncorrelated.  These transformed vectors can be 

used by regression techniques without having the 

problems of collinearity.  A lower dimensional 

input space will also usually reduce the time 

necessary to train a neural network and the 

reduced noise will improve the mapping.  The 

objective of PCA is to reduce the dimensionality 

and preserve as much as the relevant information 

as possible.  PCA can also be thought of as a 

method of preprocessing data to extract 

uncorrelated features from the data. 

 

The PCA method involves linearly 

transforming the input space into an orthogonal 

space that can be chosen to be of lower dimension 

with minimal loss of information.  Suppose we 

have m samples of n random variables in a matrix 

x where the n columns are the variables and the m 

rows are the observations.  We want to transform 

this n-dimensional space into a dimension m 

where k < m.   

 

Where: n = dimensionality of original space 

 k = dimensionality of the reduced PC 

space 

 m = number of observations in either 

space 

 

 

For one observation we can write the equation as 

follows: 

 

 

 

We can do this sequentially by first forming a 

new variable (t1) that is a linear combination of 

the original p variables that has a maximum 

variance.  For the first Principal component, this 

can be written as: 
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The first observation vector of raw data is 

labeled x and is of dimension nx1, while the 

transformed observation is labeled z and is kx1.  

Next we look for another linear function of the 

original variables that has maximum variance and 

is uncorrelated with z1.   

We can continue this until a maximum of n new 

variables called Principal Components are found.  

These  PCs are uncorrelated and arranged in 
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order of decreasing variance.  Hopefully, some 

k<<n PCs can be found that will contain most of 

the information of the original data set.  We 

calculate the PCs from the covariance matrix, Σ of 

the original data matrix x.  Recall that the 

covariance matrix is a nxn matrix where the 

diagonal elements are the variances of the 

columns (variables) of x and the off diagonal 

elements (i,j) are covariances between columns i 

and j.  Since the true covariance matrix is 

seldom known, we replace it with the sample 

covariance matrix S.  

We will now use the above procedures to find 

the number of principal components of some 

highly correlated sensor data.  The data to be 

used is from real plant.  We will use the steam 

generator level of the reactor loop A Flow data 

which consists of four redundant sensors. 

 

 

Now to find out how many of the principal 

components (or factors) are important several 

indicator functions can be used.  Each 

eigenvalue is proportional to the variance in the 

data that the corresponding eigenvalue accounts 

for.  If a set of eigenvalues span only random 

noise, the eigenvalues should be small and equal.  

We can plot the eigenvalues to determine how 

many of the principal components contain useful 

information.  The values will be arranged in 

descending order with the magnitude representing 

the amount of information contained in that 

principal component (PC).   

 

We can transform back to the data space and call 

this a PC prediction Xp using all the PCs.  When 

using all of the PCs, the prediction equals the 

original data.  The figure below shows the PC 

extraction and transformaiton from the PC scores 

(z) back to the data (x).  When some PCs are not 

used to transform back to the original space, the 

data has effectively been filtered. 
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To get what is probably the best estimate of the 

correct sensor value, we can use the one important 

PC and average the results with a median filter. 

 

 

3. Conclusion3. Conclusion3. Conclusion3. Conclusion    
    

The major advantages of using the PCA 
over the direct averaging techniques are 

1. Its ability to properly model 
common noise. 

2. Its ability to reduce spillover 
effects 

3. Its ability to uncertain in the 
parameter estimate. 
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