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1. Introduction 

 

Recently, many on-line approaches to instrument 

channel surveillance (drift monitoring and fault 

detection) have been reported worldwide. On-line 

monitoring (OLM) method evaluates instrument channel 

performance by assessing its consistency with other 

plant indications through parametric or non-parametric 

models [1]. The fault detection capability of an auto-

associative kernel regression (AAKR) with correlation 

coefficient weighting on kernel distances is 

demonstrated. The performance measures of Error 

Uncertainty Limit Monitoring (EULM) fault 

detectability and Sequential Probability Ratio Test 

(SPRT) are selected and the results are compared with 

auto-associative kernel regression (AAKR) method [2]. 

Also, the transient modeling capability is demonstrated. 

 

2. Methods and Results 

 

2.1 AAKR with Correlation Coefficient Weighting[3] 

The AAKR and AAKR with Correlation Coefficient 

Weighting methods is described in [2] and [3].  

Let’s recall the normalized correlation coefficient 

vector assessing the linear dependence between random 

variables as : 
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where j is the index of the number of redundant sensors.  

The correlation coefficient assesses the linear 

dependence between two random variables.  It is equal 

to the covariance divided by the largest possible 

covariance and has a range -1<pxy<1. A negative 

correlation coefficient simply means the relationship is 

inverse, or as one goes up, the other tends to go down. 

The correlation coefficient weighting on distance 

metric is performed as follows : 
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where, 
iX  is weighted average of historical, error-free 

observations termed memory vectors and x  is a 1×p 
query vector of process variable measurements.  

For a single query vector, this calculation is repeated 

for each of the nm memory vectors, resulting in an nm×1 

matrix of distances d. Next, these distances are 

transformed to similarity measures used to determine 

weights by evaluating the Gaussian kernel, expressed 

by:  
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where σ is the kernel bandwidth, w are the weights for 

the  nm memory vectors. 

 Finally, these weights are combined with the memory 

vectors to make predictions according to: 
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2.2 Performance Metrics 

The performance metrics compared are the auto 

sensitivity, EULM and SPRT fault detectabilities. The 

definitions of each metrics can be found in reference [2]. 

The auto sensitivity is a measure of an empirical 

model's ability to make correct sensor predictions when 

the respective sensor value is incorrect due to some sort 

of fault. An auto sensitivity value of 0 is desirable and 

means the model is impervious to the input fault. The 

auto sensitivity metric is of great importance to OLM. If 

a model’ s auto sensitivity is 1, then the model's 

prediction follows the fault, resulting in a residual of 

zero, and the fault cannot be detected. If an auto 

sensitivity value is non-zero, its prediction will 

underestimate the size of the sensor fault and the OLM 

system drift limits may need to be adjusted to reflect this 

fact.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Comparison of auto-sensitivity of the correlation 

coefficient weighted AAKR over the conventional AAKR. 

 

Figures 1 ~ 3 show the performance metrics of auto 

sensitivity, EULM and SPRT fault detectabilities of  

improved performance of the correlation coefficient 

weighted AAKR over the conventional AAKR. 
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 Figure 2. Comparison of SPRT fault detectability 
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Figure 3. Comparison of EULM fault detectability 

  

2.32 Transient Modeling Capability 

The plots presented in Fig. 4 and 5 show the dynamic 

modeling results of feedwater flow rate and S/G level 

during a stratup transient. The correlation coefficient 

weighted AAKR gives very robust and accurate 

modeling result for measured plant variables.  

 

3. Conclusion 

 

This paper introduces the fault detection metrics of 

modeling capability of an auto-associative kernel 

regression (AAKR) with correlation coefficient 

weighting on kernel distances. The developed method 

shows an improved performance over conventional 

AAKR. The transient modeling capability is also 

demonstrated with real plant measurements.  
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