Fabrication method for large grain-sized UO₂ fuel pellets

Jae Ho Yang*, Young Woo Rhee, Ki Won Kang, Kim Dong-Joo, Jong Heon Kim, Keon Sik Kim, Kun Woo Song

Advanced LWR Fuel Development, Korea Atomic Energy Research Institute, (150-1 Dukjing-Dong), 1045 Daedeokdaero, Yuseong-gu, Daejeon-si 305-353, Korea yangjh@kaeri.re.kr

1. Introduction

To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. Research on fuel pellets focuses on the modification of microstructure to significantly reduce Pellet-Cladding Interaction (PCI) and Fission Gas Release (FGR) to increase the high burn-up safety margins on LWRs. [1]

Large grain-sized UO₂ fuel pellets can be the most promising candidate for high or very-high burn-up fuels because they can reduce the PCI by enhancing the fuel dislocational creep behavior [2], and FGR [3]. Moreover, large grain-sized pellet can increase the critical degree of burn-up for High Burn-up Structure (HBS) formation. [4]

This paper deals with the fabrication process for large-grained UO₂ pellets. In commercial fuel pellets fabrication process, the defective UO₂ pellets are recycled in the form of U_3O_8 powder by oxidizing the defective pellets. This paper shows that the recycled U_3O_8 power morphology can be significantly enhanced by only modifying the oxidizing temperature. In addition, this U_3O_8 powder can effectively promote a grain growth of UO₂ pellets.

2. Experimental

The UO₂ fuel pellets were prepared by sintering the ADU-UO₂ green pellet via conventional sintering process. In order to investigate the dependence of U_3O_8 powder property on the oxidizing temperature, the sintered UO₂ pellets are oxidized at different temperatures of 325 and 450 °C in air, respectively. The U_3O_8 powders morphology was examined by SEM and their BET surface areas were measured by BET surface area analyzer.

Two groups of U_3O_8 powder were prepared. First one is as-received un-doped U_3O_8 and other is Al doped U_3O_8 powders. $3\sim10$ wt% of those U_3O_8 powders were added to the UO₂ powder, which was produced through the Dry-Conversion (IDR-DC) process. Powder mixtures were mixed with a tumbling mixer. The powder mixture was pressed into green pellets at 300 MPa. The green pellets were sintered at 1730 °C for 4 h in flowing H₂+1.5%CO₂ gas.

The sintered density of UO_2 pellets was measured by the water immersion method. The pellets were sectioned axially, ground and polished. The polished pellets were thermally etched at 1250 °C in carbon dioxide gas in order to examine grain boundaries. The pore and grain structure were examined by an optical microscope and grain size was determined by the linear intercept method.

3. Results

Fig. 1 shows the SEM micrographs of the U_3O_8 powders which were obtained by oxidizing the UO₂ pellets at 325 and 450 °C, respectively. During the oxidation, UO2 pellets were spontaneously pulverized to U₃O₈ powder because the lattice volume of U₃O₈ is about 30% larger than that of UO₂. The U_3O_8 powder which was oxidized at 450 °C (Fig. 1(b)) is angular in shape and many cracks developed on the surface. In a commercial UO2 pellet fabrication process, the defective pellets are oxidized at about 450 °C. And this pop-cone-like-shaped U_3O_8 is typical one. When the UO₂ pellets are oxidized at low temperature of 325 °C, however, the U_3O_8 powder morphology is remarkably changed. Several thin U₃O₈ plates are piled up and form a fault plane-like shape. The surface of thin U_3O_8 plate is uneven and fine columnar shape grains can be observed. The BET surface area was measured to be 1.50 m²/g for U_3O_8 powder oxidized at 325 °C and 0.66 m^2/g for that at 450 °C. These results reveal that oxidation sequence of UO2 pellet at low temperature of 325 °C is quite different to that at 450 °C and the BET surface area of U₃O₈ powder is significantly increased when UO₂ pellets are oxidized at low temperature.

Fig. 1. The SEM images for U_3O_8 powders which are obtained by oxidizing the UO₂ pellets at (a) 325°C and (b) 450°C.

The U_3O_8 powders are added in a quantity of 3, 5, 10wt% to the UO₂ powder, and then sintered at 1730°C for 4h in H₂-1.5%CO₂ gas. About 10 wt% of U₃O₈ powder is usually added to the UO₂ powder in the commercial process. Fig. 2 shows the pellet density changes according to the un-doped U₃O₈ powder addition. The pellet density is decreased with the U_3O_8 addition in both cases. However, the density of pellet is increased when the low temperature oxidizing U_3O_8 powder is added. In addition, the density drop with U_3O_8 addition is mitigated in the pellet which contains low temperature oxidizing U_3O_8 powder.

Fig. 2. The UO_2 pellet density changes according to the U_3O_8 powders contents.

The U₃O₈ powder effect on the grain growth of the UO2 pellets was examined. Small amount of Al2O3 powders were mixed with U₃O₈ powders oxidized at 325°C and 450°C, respectively. These powers were added in a quantity of 5 wt% to the UO₂ powder, and then sintered at 1730°C for 4 h in H₂-1.5%CO₂ gas. Fig. 3 shows the grain structures of the 40 ppm Al-doped UO_2 pellets. It is known that Al doping promotes a grain growth of UO₂ pellets. It can be seen that the grains are enlarged by Al doping in both pellets. However, grain enlarging effect is quite different from each other even though the same amount of Al is doped in both pellets. In the case of 325°C oxidized U₃O₈ containing pellet, grains are grown from 10.5 to 16.6 µm on average by a 40ppm Al doping. On the other hand, in the 450°C oxidized U_3O_8 containing pellet, grains are grown from 9.4 to 11.2 µm on average.

Fig. 3. The grain morphologies of 5wt% of U_3O_8 containing Al-doped UO₂ pellets. (a) 325°C (b) 450°C

The pore structures of the UO_2 pellets are slightly different from each other. Pore distribution and its size are homogeneous in Fig. 3(a). Whereas, grapes-like pore clusters are formed on some grain boundaries in Fig. 3(b). These grapes-like pore clusters might be obstacles to a grain boundary migration, so grain growth can be impeded.

4. Summary

The BET surface area of recycled- U_3O_8 powder can be increased by lowering the oxidation temperature of defective UO₂ pellets. The U₃O₈ powder having higher BET surface area is more effective to mitigate the density drop of UO₂ pellets when the U₃O₈ powders are added. Moreover, U₃O₈ powder having high BET surface area effectively promotes a grain growth of UO₂ pellets.

Acknowledgements

This study has been carried out under the Nuclear R&D Program by MOST (Ministry of Science and Technology) in Korea.

REFERENCES

[1] OECD, NEA report No. 6224, Very High Burn-ups in Light Water Reactors (2006).

[2] F. Dherby, F. Louchet, A. Mocellin, S. Leclercq, Acta Materialia, 50 (2002) 1495-1505.

[3] K.W. Song, K.S. Kim, K.W. Kang, Y.H. Jung, J. Nuclear Materials, 317 (2003) 204-211.

[4] K. Une, M. Hirai, K. Nogita, T. Hosokawa, Y. Suzawa, S. Shimizu, Y. Etoh, J. Nuclear Materials, 278 (2000) 54-63.