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1. Introduction 

 
Since the welding residual stress is a major factor to 

generate Primary Water Stress Corrosion Cracking 

(PWSCC), it is important to assess the welding residual 

stress for preventing the PWSCC. In this work, at first, 

by developing a finite element model for analyzing the 

residual stress and running the ABAQUS code [1], the 

training and optimization, and test data are acquired. 

Then a support vector regression (SVR) method is 

developed to easily evaluate the residual stress for 

dissimilar metals welding for pipelines at nuclear power 

plants based on the acquired data. 

 

2. Support Vector Regression 

 

SVR [2] is to map nonlinearly the original data x  

into a higher dimensional feature space. Hence, given a 

set of data { } RRy mN

iii ×∈=1),(x  where ix  is the input 

vector to support vector machines, iy  is the actual 

output value and N  is the total number of data patterns, 

the SVM considers a regression function of the 

following form: 
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where 

[ ]TNwww Λ21=w  

[ ]TNφφφ Λ21=φ . 

Also, the function )(xiφ  is called the feature. 

Equation (1) is a nonlinear regression model because 

the resulting hyper-surface is a nonlinear surface 

hanging over the m -dimensional input space. The 

parameters w  and b  are a support vector weight and a 

bias that are calculated by minimizing the following 

regularized risk function: 
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Here, λ  and ε  are user-specified parameters and 

ε
)(xfyi −  is called the ε -insensitive loss function 

[13]. The loss equals zero if the estimated value is 

within an error level ε , and for all other estimated 

points outside the error level ε , the loss is equal to the 

magnitude of the difference between the estimated value 

and the error level ε  (see Fig. 1). That is, minimizing 

the regularized risk function is equivalent to minimizing 

the following constrained risk function: 
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subject to the constraints 
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where the constant λ  determines the trade-off between 

the flatness of )(xf  and the amount up to which 

deviations larger than ε  are tolerated, and 

[ ]TNξξξ Λ21=ξ  and [ ]TN
**

2
*
1

* ξξξ Λ=ξ  

are slack variables representing upper and lower 

constraints on the outputs of the system and are positive 

values. 

The constrained optimization problem can be solved 

by applying the Lagrange multiplier technique to (4) 

and (5) and then by using a standard quadratic 

programming technique. Finally, the regression function 

of (1) becomes 
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where )()(),( xφxφxx i
T

iK =  is called the kernel 

function and the kernel function used in this paper is a 

radial basis function. A number of coefficients *
ii αα −  

are nonzero values and the corresponding training data 

points have approximation error equal to or larger than 

ε . They are called support vectors. 

The two most relevant design parameters for the SVR 

model are the insensitivity zone ε  and the 

regularization parameter λ . An increase of the 

regularization parameter λ  penalizes larger errors, 

which leads to a decrease of approximation error. This 

can also be achieved only by increasing the weight 

vector norm. However, an increase in the weight vector 

norm does not make sure of the good generalization 

performance of the SVR model. Increasing the 
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insensitivity zone ε  means a reduction in requirements 

for the accuracy of approximation and it also decreases 

the number of support vectors, leading to data 

compression. Increasing the insensitivity zone ε  has 

smoothing effects on modeling highly noisy polluted 

data. 

The SVR model is obtained by learning from 

experimental data and should be optimized to maximize 

the estimation performance. The performance of the 

SVR model depends heavily on the three kinds of 

design parameters such as the insensitivity zone ε , the 

regularization parameter λ , and the kernel function 

parameters. So these parameters were optimized using a 

genetic algorithm. 

 

3. Application 

 

A finite element model for analyzing the residual 

stress is developed at first. A total of 150 analysis 

conditions such as pipeline shapes, welding heat input, 

weld metal strength, and the constraint of the pipeline 

end parts are considered for assessing the welding 

residual stress according to some paths in the weld zone. 

Table 1 shows the conditions for analyzing the welding 

residual stress.  

 
Table 1. Conditions for analyzing the welding residual stress. 

Pipeline shape 
Heat input, 

H [kJ/sec] 

Yield stress 

of weld 

metal, σys 

[MPa] 

Constraint 

of end 

section 

Ro[mm] RN[mm] Ro/t Pass 1; others   

205.6 

205.6 

205.6 

300.10 

271.75 

256.80 

4.8778 

6.8763 

8.8735 

0.49764; 1.2690 

0.55985; 1.4277 

0.62205; 1.5863 

0.68426; 1.7449 

0.74646; 1.9036 

192.33 

203.06 

213.70 

224.38 

235.07 

Restrained 

205.6 

205.6 

205.6 

300.10 

271.75 

256.80 

4.8778 

6.8763 

8.8735 

0.49764; 1.2690 

0.55985; 1.4277 

0.62205; 1.5863 

0.68426; 1.7449 

0.74646; 1.9036 

192.33 

203.06 

213.70 

224.38 

235.07 

Free 

 

 

Fig. 1. A weld zone of different kinds of metals and paths in 

the weld zone for the data acquisition. 

 

A total of 2601 welding residual stress data are 

acquired along two paths shown in Fig. 1 by running the 

ABACUS code. Based on these data, the SVR model is 

optimized and the performance of the SVR model is 

given in Tables 2 and 3. It is known that the proposed 

SVR model favorably evaluates the welding residual 

stress and is superior to the fuzzy model [3]. 

 
Table 2. Performance of the proposed SVR model for the 

welding residual stress assessment (inside path). 

Constraint of 

end section 
Data type 

RMS 

error(%) 

Relative 

max error 

(%) 

No. of 

data 

Max. 

Fitness 

Training Data 0.9310 7.5833 1261 

Optimization 

Data 
2.0160 9.2657 251 

0.9808 

Restrained 

Test Data 1.8014 5.3826 63 - 

Training Data 3.9960 22.1202 1261 

Optimization 

Data 
5.9134 32.5770 251 

0.8234 

Free 

Test Data 7.3509 25.6057 63 - 

 
Table 3. Performance of the proposed SVR model for the 

welding residual stress assessment (center path). 

Constraint of 

end section 
Data type 

RMS 

error(%) 

Relative 

max error 

(%) 

No. of 

data 

Max. 

Fitness 

Training Data 2.1145 6.8356 1261 

Optimization 

Data 
3.5448 25.7399 251 

0.9205  

 
Restrained 

Test Data 4.7517 29.9444 63 - 

Training Data 2.3229 8.6260 1228 

Optimization 

Data 
2.1277 6.7904 277 

0.9770  

 
Free 

Test Data 2.1549 6.8626 70 - 

 

 

4. Conclusion 

 

In this work, a SVR model has been developed to 

easily assess the welding residual stress for preventing 

the PWSCC. It was known that the proposed SVR 

model could estimate the welding residual stress well.  
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