
Fault Tree Analysis of KNICS RPS Software

Gee-Yong Park,a Kwang Yong Koh,b Eunkyoung Jee,b Dae Hyung Lee,a Kee-Choon Kwon a

a Korea Atomic Energy Research Institute, 150 Deokjin, Yuseong, Daejeon, 305-353, Korea, gypark@kaeri.re.kr

b Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejon, 305-701, Korea

1. Introduction

A digital reactor protection system (RPS), being

developed in the KNICS (Korea Nuclear Instru-

mentation & Control System) project, which is called

the IDiPS in the KNICS project, contains safety-critical

software. The IDiPS is composed of a group of bistable

processors which redundantly compare process

variables with their corresponding setpoints and a group

of coincidence processors that generate a trip signal

when a trip condition is satisfied according to the

comparison results of at least two channels out of a total

of the four bistable channels. All these functions are

implemented in the software for the IDiPS, and the trip-

functioning software is classified as safety-critical. The

safety analysis on the safety-critical software is being

performed as a part of the verification and validation

(V&V) activities. In this summary, the software safety

analysis by a software fault tree analysis (SFTA) is

presented.

2. Strategy and Methods

It is recommended in the code and standards that the

software safety analysis (SSA) shall be performed

during the development of the software used for a safety

system of nuclear power plants [1, 2]. In the KNICS

project, the software safety analysis is activated at each

phase of the software lifecycle. For the techniques for

the SSA, the software HAZOP (Hazard and Operability)

method is used in the hazard analysis (HA) at the

requirements phase and the software HAZOP and SFTA

are employed at the design and implementation phases.

The purpose of applying the software HAZOP and

SFTA to a software system is to identify a defect or

hazard in the software that can induce or affect the

system hazard acquired from a system-level hazard

analysis by an FMEA (Failure Modes and Effects

Analysis) or an FTA (Fault Tree Analysis). For the

IDiPS RPS, the software-contributable system hazards

were identified through a review of the IDiPS FMEA

results and they are presented in Table 1.

Table 1. System hazards for IDiPS RPS.
Item

No.
Hazards

Criticality

Level

1
IDiPS cannot generate a trip signal when a trip

condition for a process variable is satisfied.
4

2
IDiPS generates a trip signal when it should not

generate a trip signal.
3

3
IDiPS cannot send qualified information of its

operating status to the main control room .
2

The criticality level in Table 1 is given relatively to

the severity of a hazard item. The level 4 is the most

significant hazard that can drive a plant to a severe

accident, and the level 1 indicates an insignificant

hazard that seldom affects the system availability. The

top node of the SFTA is only for the first hazard item in

Table 1 and thus it is confined to the event that a

software module cannot generate a trip signal when a

trip condition for the software module is satisfied.

In the SSA for the IDiPS software at the design or

implementation phase, the software HAZOP was, at first,

applied to the software modules represented by a

function block diagram (FBD) which is used for the

POSAFE-Q, a programmable logic controller (PLC)

developed in the KNICS project. The software HAZOP

evaluated all the design specifications with respect to all

the software-contributable system hazards as in Table 1.

And the significant defective areas in the FBD modules

were identified by this method. The SFTA was then

applied to these defective modules to identify accurately

a defective location or a logic error. Both methods are

redundant and complementary in that the software

HAZOP is a forward (in fact, HAZOP is a bidirectional

method but, in this study, a forward analysis was more

weighted) and broad-thinking analysis method through a

team work of the HAZOP members and, on the contrary,

the SFTA is a backward and local systematic analysis

method by an individual analyst.

3. Application of Software Fault Tree Analysis

The FTA is a well-established safety analysis

technique in nuclear power plants [3] and it has been

widely used in the safety analysis. The safety analysis

by the FTA in the software is slightly different due to

the fact that the software is configured based on the

logistic constructs and its behavior is deterministic.

As supposed by Leveson and Shimeall [4], the

purposes of the SFTA are to detect software logic errors,

to determine the conditions under which fault-tolerance

and fail-safe procedures should be initiated, and to

facilitate effective safety testing by pinpointing critical

functions and test cases. In the SFTA, it is hypothesized

that the software has produced an unsafe output and it is

shown that this could not happen because the hypothesis

leads to a contradiction [4].

The SFTA is usually constructed based on the so-

called fault tree templates which are small fault trees for

their corresponding components in the software. And

one more different aspect of the SFTA is that an event

in a fault tree template may be a just logic operation,

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 10-11, 2007

which is prohibited in the conventional FTA from the

fact that all events that are linked together on a fault tree

should be written as faults [3]. For a typical function

block (FB) in the FBD module, a fault tree template is

constructed in a way that failure modes are extracted

starting from the output port of an FB, through the body

of the FB, ending at the input ports, as shown in Figure

1. The lower left event in Figure 1 indicates plausible

faults in an FB and the lower right event is for the logic

operation through which a template in the immediate

lower tree level is attached.

Figure 1. Overall architecture for constructing a fault tree

template for function blocks in a FBD module.

Figure 2 shows a fault tree template for the AND

function block. Based on the templates like that in

Figure 2, the SFTA is constructed for the FBD modules

selected from the software HAZOP analysis. Figure 3

shows a very simple SFTA among the SFTA results; it

depicts the SFTA for a low DNBR trip module in the

bistable processor. The FBD module describing a low

BNBR trip (DNBR_LO Trip) is shown in Figure 4.

Figure 2. A Fault tree template for the AND function block.

(a)

(b) (c)

(d)
Figure 3. Software FTA for DNBR_LO trip module.

Figure 4. Function block diagram module of BNBR_LO trip.

From Figure 3(d), an internal variable TRIP_LOGIC

is toggled between 0 and 1 when a trip condition is

satisfied, which means some logic error exists in the

AND1 function block. This defect identified by the

SFTA had not been identified in the previous processes

of a document evaluation and a formal verification.

4. Conclusion

For the SFTA of a digital RPS, its strategy and

method are presented in this summary. Because of a

different viewpoint from the V&V activities, the SFTA

can obtain some valuable results that have not been

identified through a rigorous V&V procedure.

REFERENCES

[1] Regulatory Guide 1.168, Verification, Validation,

Reviews and Audits for Digital Computer Software Used in

Safety Systems of Nuclear Power Plants, U.S. Nuclear

Regulatory Commission , 2004.

[2] IEEE Std-1228, Software Safety Plan, 1994.

[3] W. E. Vesely, et al., Fault Tree Handbook, NUREG-C492,

U. S. Nuclear Regulatory Commission, 1981.

[4] N. G. Leveson, and T. J. Shimeall, Safety Verification of

Ada Programs using Software Fault Trees, IEEE Software, pp.

48-59, July 1991.

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 10-11, 2007

	분과별 논제 및 발표자

