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1. Introduction 

 
A circular logic or a logical loop is defined as the 

infinite circulation of supporting relations due to their 

mutual dependencies among the systems in the Fault 

Tree Analysis (FTA). While many methods to break the 

circular logic have been developed and used in the fault 

tree quantification codes, the general solution for a 

circular logic and its breaking methods are not generally 

known as yet. This paper presents an analytic solution 

for circular logics in which the systems are linearly 

interrelated with each other. Then, a general treatment 

of circular logics is discussed. To formulate the analytic 

solution, the relations among systems in the fault tree 

structure are described by the Boolean equations. The 

solution is, then, obtained from the successive 

substitutions of the Boolean equations, which is 

equivalent to the attaching processes of interrelated 

system’s fault tree to a given fault tree. The solution for 

three interrelated systems and their independent fault 

tree structures are given as an example. 

 

2. Analytic Solution 

 

2.1 Deduction of the analytic solution 

 

If the “n” numbers of systems constitute circular 

logics with linear dependencies, the following equations 

can be written for N interrelated systems in terms of the 

Boolean expression. 
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where Si, ci, and aij are a total failure events of system 

i, basic events representing an independent failure of 

system i, and common events causing the failure of 

system i, respectively. + and · operations in Eq. (1) 

mean “OR” and “AND” operation of Boolean algebra 

respectively. 

Eq. (1) can be solved by a component wise matrix 

form as shown in Eq. (2)[1]  
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Where the term δj is determined by the fault tree 

analyst depending whether the self recursion terms have 

a meaningful event set or not. The assignment of a value 

for δj is given as follows:  
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2.2 Application for three interrelated systems 

 

We show a simple example for fault tree structure of 

three interrelated systems. 
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Figure 1 solution for three interrelated systems 

 

The analytic solution for the three interrelated 

systems is provided from Eq. (2) by letting n=3. 
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For system 1, the following Boolean equation will be 

obtained by letting i=1 and expanding summation 

convention for each index as follows.  
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From Eq. (4), the independent fault tree of system 1 

can be constructed as shown in Fig. 2. As shown in Fig. 

2, for three interrelated systems, two attaching processes 

are needed to eliminate the dependencies. At each 

attaching step, the self recursion events should be 

handled properly according to their physical meaning on 

the system failure 

 

3 Treatment of Circular Logic 

 

When a system is modeled by mathematical way, 

initial conditions for the system are necessary to know 

the evolution of the system status. However, in a fault 

tree model of the systems, initial condition is not 

explicitly given for the development of sub-system or 

component. These approaches do not mainly invoke 

critical problem when a system is independent on any 

other system. However, when a system is coupled with 

other systems to make circular logics, the initial 

condition may be important factor to determine the 

system’s failure event. If a fault tree for a system is 

developed, the fault tree can have a two initial condition, 

that is, a standby state or running state. We have divided 

these two cases and the treatment methods of circular 

logic are explained separately. 

 

2.1 When a system is in standby 

 

Figure 2 shows a circular logic extracted from the 

Ulchin 3&4 PSA model, so called PRIME-U34i.[2] 

This circular logic is for AAC DG (diesel generator) 

failure event.  

 
Figure 2 Circular Logic for AAC DG Standby 

failure    
 

The circular logic of figure 2 is composed of the 

following sequences. PCS (plant control system) do not 

give signal to AAC DG. PCS is failed by EPS (electric 

power supply) for PCS. The electricity to PCS can be 

supplied by two ways. One is battery and the other is 

480V MCC (motor control center). Then, 480V MCC is 

failed by AAC DG. In a real situation, AAC DG cannot 

receive actuation signal if battery does not give 

electricity to PCS. If the terminal gate of AAC DG 

failure is considered as an initial condition, this circular 

logic can be solved easily as in a real situation. Since 

the AAC DG is in standby, that is, in a false state, the 

AAC DG failure event at the terminal of the fault tree 

give false event condition. In a Boolean algebra, this 

means that the AAC DG failure event is treated as 

universal event. By this treatment, the circular logic can 

be broken and the fault tree can describe real event 

situation. 

 

2.2 When a system is running 

 

Figure 3 shows a circular logic extracted from 

PRIME-U34i.   
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Figure 3 Circular Logic for AAC DG running 

failure 

 

The circular logic of figure 3 is composed of the 

following sequences. HVAC (Heating, Ventilation & 

Air Conditioning) is failed to give room cooling for 

AAC DG by EPS. EPS is failed by AAC DG failure. In 

a real situation, AAC DG can be started without HVAC. 

As in the case of previous section, if AAC DG failure 

event in the terminal gate is treated as null event, the 

fault tree can describe real situation. 

 

3. Conclusion 

 

This paper presents an analytic solution for circular 

logics in which the systems are linearly interrelated with 

each other. Then, a general treatment of circular logics 

is discussed. We expect that if an initial state of a 

system is incorporated into the fault tree model, an 

autonomous treatment of circular logic in a large fault 

tree can be easily done. 
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