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1. Introduction 

 
The post-CHF (post-critical heat flux) heat transfer 

under low flow conditions plays an important role in the 

thermal hydraulic behavior of research reactors and 

advanced nuclear reactors as well as in the accident 

analyses of light water reactors. In the present paper, a 

3x3 rod bundle post-CHF was calculated using the form 

of a one-dimensional three-field model of the MARS 

code [1]. In order to improve the prediction capability 

of the post-CHF heat transfer, the Bromley correlation 

of the MARS code was replaced with the look-up table 

and a correction factor for the film boiling heat transfer 

[2, 3]. The modified MARS code shows a good 

prediction capability in low pressure and low flow 

conditions.  

 

2. Modification of the Post-CHF Model in the 

MARS Code 

 

As shown in Figure 1, the test section has a flow 

housing (39.8 x 39.8 mm
2
) inside a pressure vessel 

where nine heater rods having a heated length of 3,673 

mm are located. The heater rods have a symmetric 

cosine axial heat flux and have a diameter of 9.52 mm 

and pitch of 12.6 mm. A detailed description of the 

experiment can be found in Moon et al. [4]. 

The 3x3 rod bundle was modeled using the one-

dimensional calculation of the MARS code version 3.0a. 

Figure 1 shows the one-dimensional nodalization 

scheme for the 3x3 rod bundle test section. The inlet 

and outlet plenums of the test section were treated as 

boundary conditions. In order to reflect the axial heat 

flux profile, the heated length of the heater rods was 

non-uniformly divided into 46 nodes. The upper half 

region of the heater rods in which a post-CHF heat 

transfer is expected to occur has more fine nodes than 

the lower half region. The boundary condition of the 

heater rods was treated as a convective heat transfer 

from a rod bundle without a cross-flow. Thus, the rod 

pitch-to-diameter was inputted in the boundary 

condition to model the effect of the rod bundle on the 

calculation of the critical heat flux. 

The internal geometry of the heater rods is modeled 

in detail. The test section shroud is also modeled 

because the cold wall can affect the CHF and the post-

CHF heat transfer. 

Groeneveld et al. [2] developed the look-up table for 

the fully-developed film boiling heat transfer for a 

round tube with a diameter of 8 mm. The heat transfer 

coefficients are tabulated as a function of the pressure, 

mass flux, quality and wall superheat. Guo and 

Groeneveld [3] suggested a correction factor in order to 

apply the look-up table to the developing film boiling 

heat transfer regime. This look-up table and correction 

factor were implemented into the MARS code as 

follows: 

Heat transfer coefficient for the fully-developed film 

boiling for a hydraulic diameter D:  
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correction factor for a developing film boiling regime:  
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heat transfer coefficient for a film boiling: 
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Where a and b are constants, and hNB is the nucleate 

boiling heat transfer coefficient. TW, TCHF, Tsat are the 

wall temperature at a film boiling, the wall temperature 

at a CHF, and the saturation temperature, respectively.  

 
Figure 1. MARS 1-D nodalization 

 

3. Results and Discussion 

 

Figure 2 shows the predicted wall temperature 

profiles along the heated length at two different 

pressures. The CHF location is not changed because the 

original and modified MARS codes use the same CHF 

look-up table. However, the modified MARS code 

shows better prediction results for the post-CHF at low 

pressures when compared with the original code using 

Bromley’s correlation. The original MARS code 

generally overestimates the wall temperature at the post-

CHF condition, especially for low pressure and low 

flow conditions as shown in Figures 3 and 4. The 
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prediction capability of the MARS code is improved 

significantly under the low pressure and low flow 

conditions. Figure 5 shows the predicted wall 

temperature against the measured average wall 

temperature. Here, the measured average wall 

temperature means the arithmetic mean of the wall 

temperatures of all 3x3 heaters at the same given axial 

location. The overestimation by the original MARS 

code is reduced significantly by the modified post-CHF 

correlation.  

The look-up table for the fully-developed film boiling 

heat transfer and the correction factor for the developing 

film boiling heat transfer are based on a large amount of 

post-CHF heat transfer data for a round tube. However, 

the assessment of this study shows that the look-up table 

and the correction factor can be used even for a rod 

bundle.  
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Figure 2. Prediction of heater wall temperature 

 

3. Conclusion 

 

The Bromley correlation of the MARS code was 

replaced with a look-up table and a correction factor for 

the post-CHF heat transfer. The modified MARS code 

shows a significant improvement for the prediction 

capability of a post-CHF heat transfer, especially for the 

low flow and low pressure conditions. 
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Figure 3. Prediction errors against pressure 
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Figure 4. Prediction errors against mass flux 
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Figure 5. Predicted average wall temperature 
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