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1. Introduction 

 

Recently, a Monte Carlo (MC) Wielandt method for 

eigenvalue calculations was proposed to accelerate 

fission source convergence [1]. It was reported that the 

method has the potential to eliminate most of the 

variance bias for MC eigenvalue calculations [2]. 

However, not only the amount of the variance bias was 

not quantified but also the calculation efficiency was not 

estimated in terms of the real variance. 

The objectives of this paper are to develop a real 

variance estimation method for the MC Wielandt 

calculations and to analyze the efficiency of the MC 

Wielandt method by the Figure of Merit (FOM) 

approach with the real variance. In addition, the MC 

algorithm for the Wielandt method is mathematically 

derived. 
 

2. Estimation of Real Variance in MC Wielandt 

Calculations 
 

2.1 Monte Carlo Algorithm for Wielandt Method 
 

The time-independent Boltzmann transport equation 

for neutrons can be written in an operator notation as 

ψψ FT
k
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k is the multiplication factor and the operators are 

defined as 
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By inverting T and operating with F on both sides of 

Eq. (1), we obtain the following form. 

[ ] ψψ FFTF  
1 1−=
k

                           (4) 

The fission source distribution (FSD), S and fission 

operator, H are defined as follows 

ψF=S ,                                     (5) 

1−= FTH .                                  (6) 

The fission operator ),,,,( ΩrΩrH EE →′′′  denotes 

the number of first-generation fission neutrons born per 

unit volume about ),,( Ωr E , due to a parent neutron 

born per unit volume at ),,( Ωr ′′′ E . 

Inserting Eqs. (5) and (6) into Eq. (4) leads to the 

following eigenvalue equation. 
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In the conventional MC eigenvalue calculations, the 

FSD and k are iteratively updated as 
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The superscript t and t-1 are iteration or cycle indices. 
 

The Wielandt method is characterized by rewriting 

Eq. (1) as 
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ke is an estimated eigenvalue. 

Inverting ( )ekFT−  and applying F on both sides of 

Eq. (10), one can obtain 
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Applying the power method to Eq. (11), the FSD’s 

are updated iteratively in the Wielandt method as 

111 −′







−= t

e

t
S

kk
S H .                      (13) 

Using Eq. (6), the fission operator H′  in the 
Wielandt’s method can be expressed as 
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By the Taylor’s series expansion, ( ) 11
−− ekH  in Eq. 

(14) can be written as 
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Inserting Eq. (15) into Eq. (14) leads to 
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Substitution of Eq. (16) into Eq. (13) results in 
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The first term in the RHS of Eq. (17) means the number 

of the first fission sites sampled from the previous FSD.  

one can see that it is less than the RHS of Eq. (8) by as 

much as e

t kS 1−
H , which means the number of first-

generation fission sources to be simulated at the current 

iteration. In the course of the MC simulations, 

e

t kS 1−
H  fission sources generate the second fission 

sites by as much as the second term in the RHS of Eq. 

(17). In the same way, the fission sites from all the 

generations are sampled. 
 

2.2 Real Variance Estimation 
 

The sample variance of a tallied nuclear parameter or 

a tally in the MC Wielandt calculations is biased 

because of the inter-cycle correlations of the FSD by Eq. 

(13). We have developed a real variance estimation 

method using FSD’s inter-cycle correlation for the 

conventional MC eigenvalue calculations governed by 

Eq. (8) [3]. It can be directly applicable to the MC 

Wielandt calculations simply by replacing H by H′ . 

The real variance of a tally denoted by Q, [ ]QR

2σ  can 

be calculated by 
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N is the number of active cycles. [ ]QS

2σ  is the sample 

variance of Q  defined by 
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iQ  is an MC estimate of Q at an active cycle i. 
Q

mR  is 

the contribution to Q of a unit fission source in region m. 
i

mna′  is the m-th row and n-th column element of the 

matrix i
A′  where matrix A′  is defined by 

( )
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k0 and S0 denote the main mode eigenvalue and 

eigenvector. εn is the stochastic error at region n. 
 

2.3 Efficiency Comparison 
 

The efficiency of the MC calculation can be 

measured by FOM which is defined by 

TR2

1
FOM = .                                (22) 

R is one standard deviation divided by the estimated 

mean value and T is the computing time. 

The FOMs of the fission power tally for the fuel 

storage facility problem [4] are calculated as a function 

of the estimated eigenvalue ke in the MC Wielandt 

calculations. The results are shown in Table 1. Note that 

ke of ∞  in Table 1 corresponds to  the conventional MC 
eigenvalue calculation. Note also that the FOM with ke 

of 1.3 is 1.375 times greater than that of ∞. 
 

Table 1. FOM  for the fission power tally of the (1,3)  

assembly 

ke 

CPU 

Time 

(min.) 

power 

est. real 

standard 

deviation 

FOM 

∞ 534.2 5.91E-04 6.80E-02 0.40 

10.0 584.5 6.14E-04 6.64E-02 0.39 

2.0 1066.2 5.93E-04 5.62E-02 0.30 

1.5 1600.4 6.63E-04 3.36E-02 0.55 

1.4 1834.8 6.65E-04 3.23E-02 0.52 

1.3 2200.1 6.46E-04 2.87E-02 0.55 
 

3. Conclusion 
 

A variance-bias estimation method for the MC 

Wielandt calculations is developed from that of the 

conventional MC eigenvalue calculations. From the 

FOMs using the real variance for the slow-convergence 

benchmark problem, one can see that the calculation 

efficiency of the MC Wielandt calculations is enhanced 

by 37.5%. 
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