
An Introduction to Quantitative Measures

for Software Maintenance of Nuclear Power Plant

Hyun Jun Jo and Poong Hyun Seong

Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology

camp2006@kaist.ac.kr

1. Introduction

The I&C system of NPP has changed from the analog

system to the digital-based system using

microcontrollers and software. Thus, software has

become very important for NPP control system. The

software life cycle is divided into the development and

maintenance phase largely. Because poor software

maintenance work introduces new errors and makes

software much complex, we have to consider the

effective maintenance methods for the reliability and

maintainability of NPP software.

Function Block Diagram (FBD) is a standard

application programming language for the

Programmable Logic Controller (PLC) and currently

being used in the development of a fully-digitalized

reactor protection system (RPS) under the KNICS

project. Therefore, the maintenance work will be of

great importance in a few years. This paper studies on

the measures which give quantitative information to

software maintainer and manager before and after

modification.

The remainder of this paper is organized as follows.

Section 2 briefly describes software maintenance types

and model. In Section 3-5, we introduce the quantitative

measures for software maintenance and characteristics

of FBD program. A conclusion is provided in Section 6.

2. Software Maintenance

Software maintenance means changes that have been

made to computer programs after they have been

developed. Software maintenances are performed to

correct errors, implement changes, and enhance existing

requirements[1]. It is important that the reliability and

maintainability of modified software be maintained or

enhanced after a change especially in safety-critical and

long-life software.

2.1 Maintenance Types

Software maintenance was classified by Swans into

three types. First, corrective maintenance is to identify

and correct software failure. Second, adaptive

maintenance is to adapt software to changes in the

requirements or environments. Finally, perfective

maintenance is to enhance performance or improve

maintainability. Corrective maintenance is dominant in

hardware, but most software maintenance is adaptive

and perfective maintenance because of software

characteristics[1].

2.2 Maintenance Models

There are a few models for software maintenance.

Recent software maintenance models have included

impact analysis and accounted for ripple effect as one of

their stages[2]. The Pfleeger and Bohner model,

SADT(Structured Analysis and Design Technique)

Diagram of Software Maintenance Activities[5](see

Figure 1) has six phases including change impact and

ripple effect analysis.

Figure 1. SADT Diagram of Software Maintenance

Activities[5]

3. Change Impact Analysis

Change impact analysis (CHI) is to evaluate the

effects of a proposed change. CHI has been defined as

“identifying the potential consequences of a change, or

estimating what needs to be modified to accomplish a

change”[6]. Waiting until the change is made is far too

late in the maintenance process to evaluate the effects of

the change. Requirement traceability is a method of

examining change before its implementation.

3.1 Traceability graph

It describes the relationships within a workproduct

and between workproducts(vertical and horizontal

traceability)[5]. It helps the maintainer overview the

products related with a change. Thus the impact of

changes can be identified and checked during the

modification of a program.

Transactions of the Korean Nuclear Society Autumn Meeting
 PyeongChang, Korea, October 25-26, 2007

- 845 -

Figure 2. Traceability Graph[5]

3.2 Quantification

The change impact can be assessed using traceability

metrics. Measures such as cyclomatic complexity can

be applied to the graph to determine if the overall

system is likely to become more complex if the

proposed change is made[5]. This measure help

maintainer and manager to choose the design

alternatives.

4. Ripple Effect Analysis

Ripple effect analysis(REA) is to evaluate the

propagation of changes to other code modules as a

result of the change just implemented[5]. Ripple effect

can show the maintainer how great the effect of a

change will be on the rest of the program or system. It

can highlight modules with high ripple effect as

possible problem modules[2].

4.1 Performance and Logical REA

REA is divided into performance and logical REA.

When several program variables are redefined in order

to introduce an acceptable solution for a change, logical

REA is accomplished using error-flow analysis.

Performance ripple effect analysis requires the

identification of modules whose performance may

change as a consequence of software modifications.

Performance dependencies often exists among modules

which are otherwise functionally and logically

independent [3].

4.2 Logical ripple effect and stability measure

The stability of a program has been defined as the

resistance to the potential ripple effect that the program

would have when it is modified. Logical ripple effect is

computed based on the impact of modifications using

error flow[4]. A figure-of-merit is then proposed to

estimate the complexity of program modification. It can

highlight modules with high ripple effect as possible

program modules and help the maintainer compare

modifications[2].

5. FBD PLC Program

There are a number of programming languages used

in PLCs. The IEC 61131-3 standards include five :

Structured Text(ST), Function Block Diagram(FBD),

Ladder Diagram(LD), Instruction List(IL) and

Sequential Function Chart(SFC). The FBD is one of the

most widely used languages because of its graphical

notations and because it is useful in applications

involving information or data flow between control

components that can be designed as a network of

software blocks.

Figure 3. A example of Function Block Diagram

6. Conclusion

It is important that the reliability and maintainability

of software be maintained or enhanced in the NPP

software maintenance. Therefore the effective

maintenance methods are considered for the reliability

and maintainability. The traceability metrics using

cyclomatic complexity is useful for choosing the design

alternatives. Especially, REA can be used in an

industrial environment for developing safety-critical

applications for ensuring system and software reliability.

There are few researches of CIA and REA in the PLC

program maintenance. Thus, future work will focus on

doing CIA and REA measures for FBD PLC program

and proposing methods to reduce CI and RE.

REFERENCES

[1] James Martin & Carma Mcclure, “Software Maintenance :

The Problem and Its Solutions”, Prentice-Hall, Chapter 2 &

17.

[2] Sue Black, Computing ripple effect for software

maintenance, Journal of Software Maintenance and Evolution,

Vol.13, pp.263-279, 2001.

[3] S. S. Yau, J.S. Collofello and T. MacGregor, RIPPLE

EFFECT ANALYSIS OF SOFTWARE MAINTENANCE,

IEEE, 1978.

[4] S. S. Yau, J.S. Collofello, SOME STABILITY

MEASURES FOR SOFTWARE MAINTENANCE, IEEE,

1979.

[5] Shari Lawrence Pfleeger and Shawn A. Bohner, A

Framework for Software Maintenance Metrics, IEEE, 1990.

[6] Jacqueline Hewitt, Juergen Rilling, A Light-Weight

Proactive Software Change Impact Analysis Using Use Case

Maps, IEEE International Workshop on Software Evolvability,

2005.

[7] W. T. Tsai, R. Mojdehbakhsh, F. Zhu, Ensuring System

and Software Reliability in Safety-Critical Systems,

Department of Computer Science and Engineering, University

of Minnesota.

Transactions of the Korean Nuclear Society Autumn Meeting
 PyeongChang, Korea, October 25-26, 2007

- 846 -

	분과별 논제 및 발표자

