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1. Introduction 

 

After the SIMPLE algorithm was introduced in the 

area of computational fluid dynamics (CFD) by 

Patankar [1], many thermal hydraulic analysis codes 

based on this algorithm have been developed 

commercially or for research purposes. The main 

features of the algorithm are easy to modify and easy to 

implement numerical or physical models in it by the 

nature of its segregated and iterative method to satisfy 

the conservation laws. The numerical method can be 

applicable to geometrically and physically complex 

problems. One of the problems is a gas mixture flow 

coupled with heat transfer in a region including a solid 

structure. For this kind of conjugate heat transfer 

problem, the energy equation is usually decoupled and 

solved sequentially in fluid and solid regions because 

there is a jump in the enthalpy at the solid-fluid 

interface. At the interface, the enthalpy is double-valued, 

but the temperature is continuous. If the energy equation 

with temperature as a primary dependent variable is 

used, the heat transfer can be solved in a directly 

coupled manner. Murthy and Mathur [2] introduced a 

form of the energy equation whose primary dependent 

variable is temperature. The main idea was to add 

unsteady and convection terms expressed with 

temperature and to solve the equation by the iterative 

method. The method is useful for the conjugate heat 

transfer problems because the discretized equation is 

expressed with temperature. Similar to this method, a 

new method is derived in this study, which is a 

consistent formulation of the energy equation for a heat 

transfer in a solid, liquid and gas mixture. The enthalpy 

form of the energy equation is used in the method. But 

the final discrete form of the equation is expressed with 

temperature. This discretization is based on a dual-time 

delta formulation.  

 

2. Numerical Method 

 

In this study, the compressible Reynolds-averaged  

Navier-Stokes equations is used. All the governing 

equations can be cast into the following integral form: 
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Where ρ is a density of the fluid, φ  is the dependent 

variable of the transport equation, v
r
is a velocity vector, 

Γ is a diffusion coefficient, for example, µΓ =  for the 

momentum equation. qφ  is a source term of the equation. 

By the context of the dual-time delta formulation, the 

transport equation can be written as: 
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In this formulation, a pseudo-time term is added to 

remedy the errors from the linearization of the equation, 

which is similar to a term in the iterative under-

relaxation formulation. A second order backward 

differencing is used for the physical time derivative (∆t), 

and the Euler implicit differencing is employed for the 

pseudo-time derivative (∆τ). In this study, a second-

order upwind or central differencing scheme is used for 

the convective flux and a second-order central scheme is 

used for the diffusive flux on the right hand side.  
Generally, the pressure gradient term included in the 

momentum equation is not known priory. With the 

approximate solution of a pressure field, the velocity 

calculated from the momentum equation is not correct. 

So it is necessary to correct the velocity in order for a 

mass conservation. The equation for the mass correction 

is derived by using the SIMPLEC algorithm. 

 

3. Energy Equation Discretization 

 

In order to describe the energy conservation law in a 

flow field, many forms of energy equations exist. In this 

study, static enthalpy equation is used because it has 

advantages in numerical and physical point of view. 

:
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In eq. (3), h is static enthalpy. For a multi-species 

flow with a chemical reaction, it becomes static thermo-

chemical enthalpy which contains the enthalpy of 

formations of the species. In the case of the high speed 

flow, h becomes total enthalpy with a modified work 

term in eq. (3). The SIMPLE algorithm requires that the 

energy equation be discretized in a implicit form. But, a 

problem is encountered in discretizing the energy 

equation because of the inconsistency of the convection 

and conduction terms of the equation. Usually, 

temperature of the conduction term is changed to 

enthalpy and the discrete energy equation is expressed 

in terms of enthalpy.  But it is not desirable for 

conjugate heat transfer problems where the enthalpy is 

not continuous on the interface of the solid and fluid. In 

this study, a new formulation is proposed to discretize 

the energy equation with temperature as a primary 

variable.  

In order to linearize the enthalpy equation in terms of 

the temperature, the pseudo-time term of the static 
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enthalpy on a fixed grid is added into the energy 

euqation.  
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The Pseudo-time term is changed to a temperature 

derivative by the chain rule. 
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The surface integral of the enthalpy convection is 

discretized to summation of the enthalpy flux on each 

face of a cell. 
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The convective flux on each face f can be written as 

f f fC J H= , where 
fJ  is a mass flux on the face. 

For an implicit scheme, the convective flux is 

linearized, where the mass flux is frozen.  
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The temperature derivative of the enthalpy contains 

only the specific heat because the mechanical energy (in 

the case of total enthalpy) and chemical enthalpy of 

formations are not directly dependent on temperature. 

The thermal diffusion can be discretized as: 
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And the diffusion flux on each face is departed into 

primary and secondary diffusion fluxes. 
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The diffusion flux can be linearized as: 
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Because the primary diffusion flux is more important 

and larger than the secondary diffusion flux, only the 

primary term which is expressed in terms of temperature 

is linearized.  
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The unsteady term of the energy equation contains 

enthalpy and pressure, which can be changed to thermo-

chemical energy for the enthalpy form of the energy 

equation. 
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The unsteady term is discretized by three-time level 

Euler implicit method.  
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The first term of the discretized right hand-side of the 

equation is added in the implicit part and the other terms 

are added in the explicit part of the discretized energy 

equation. 

In order to add the first term expressed in the total 

energy or internal energy into the implicit part of the 

discretized energy equation in terms of the temperature, 

it is necessary to linearize it to the temperature 

direivative term by a chain rule. 
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By summing all the terms, the discretized energy 

equation with explicit temperature variable can be 

obtained. 
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4. Numerical Results 

 

The numerical method proposed in this study was 

validated by solving a conjugate natural convection in a 

cavity. Fig. 1 shows the schematic of the problem and 

the temperature contours, which are continuous at the 

solid-fluid interface. 
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Fig. 1 Natural convection in a cavity with centered solid body 

(a) schematic, (b) temperature contours 
 

5. Conclusion 

 

In this study, a new formulation of an energy equation 

with temperature as a primary dependent variable was 

introduced. It can be applicable to most of heat transfer 

problems consistently including conjugate heat transfer 

in a gas mixture and solid region.  
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