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1. Introduction 
 

The Lattice Boltzmann Method (LBM) has been developed for 

application to thermal-fluid problems. Most of the those studies 

considered a regular shape of lattice or mesh like square and cubic grids. 

In order to apply the LBM to more practical cases, it is necessary to be 

able to solve complex or irregular shapes of problem domains. Some 

techniques were based on the finite element method [1, 2]. 

Generally, the finite element method is very powerful for solving two- 

or three-dimensional complex or irregular shapes of domains using the 

iso-parametric element formulation which is based on a mathematical 

mapping from a regular shape of element in an imaginary domain to a 

more general and irregular shape of element in the physical domain.  In 

addition, the element free technique is also quite useful to analyze a 

complex shape of domain because there is no need to divide a domain by 

a compatible finite element mesh.  

This paper presents a new finite element and element free formulations 

for the lattice Boltzmann equation using the general weighted residual 

technique.  Then, a series of validation examples are presented. 
 

2. Finite Element LBM Formulation (FELBM) 
 

The lattice Boltzmann equation is expressed as  
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where if  is the particle velocity distribution function along the α  
direction, t represents time, αe

ρ
is the discrete velocity vector along the α  

direction, and αΩ  denotes the collision operator.  

When a single relaxation time technique is used for the collision 

operator like the BGK technique [3], the collision operator can be written 

as 
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where τ is the relaxation constant and αf
~
 denotes the local equilibrium 

distribution of αf . The local equilibrium distribution is  
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in which ρ  is the fluid density and  v
ρ
 is the fluid velocity. They can be 

expressed as 
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In addition, αω for D2Q9 and for D3Q15 (see Fig. 1) are the weighting 

parameter for each velocity direction as given below, respectively:  
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Substitution of Eq. (3) into Eq. (1) results in 
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In order to derive the Finite Element Lattice Boltzmann Method 

(FELBM) from Eq. (6), the problem domain is discretized into a number 

of finite elements. Then, the variable αf  is expressed in terms of the 

interpolation functions and nodal variables as given below: 
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in which 
iH  is the spatial interpolation function for the nodal variable 

ifα  at the thi − node of the finite element, and n is the number of nodes 

per element. In addition, [ ]H  is a row vector consisting of the 

interpolation functions, and { }αf  is a column vector containing unknown 

solutions at the nodes.  Plugging Eq. (7) into Eq. (6) yields 

[ ]{ } [ ]{ } [ ]{ } { }( ) 0
~1

=−+∇⋅+ ααααα τ
ffHfHefH

ρ&      (8) 

for each finite element. The superimposed dot denotes the temporal 

derivative.  Applying the weighted residual formulation to Eq. (8) gives 

the following expression 
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where the integration is conducted over each finite element domain eS  

and the summation is performed over the total number of elements.  

Furthermore, { }w  is a column vector of the weighting functions.  The 

size of { }w  is equal to the number of nodes per element.  Rewriting Eq. 
(9) yields 
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where  
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Depending on the choice of the weighting functions, the subsequent 

technique can be called the Galerkin method, collocation method, method 

of moments, least-square method, or sub-domain method.  In this study, 

the first three techniques will be presented.   

Using the forward difference scheme for time integration, Eq. (10) is 

expressed as 
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Equation (11) is solved for the given initial and boundary conditions.   

 

3. Element Free LBM Formulation (EFLBM) 
 

Consider a lattice point x and its neighborhood as a subdomain xΩ .  

Inside the subdomain, there are n numbers of randomly located lattice 

points. In order to represent the solution )(xu  inside the subdomain, a 

polynomial expression is assumed as below 

{ } { }( ) ( ) ( )
T
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where  { })(xp  is a vector containing a complete monomial basis of order 

m as expressed below and  { })(xα  is a vector consisting of coefficients 

of the monomial terms.  The coefficient vector is determined to best fit 

the solutions at the lattice points inside the subdomain, utilizing the 
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weighted least square technique.  The sum of the weighted least square is 

expressed as 
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where  )(xwk is the weighting function associated with the lattice point 

k , and kû  is the solution at the same node.  Minimization of the above 

equation with respect to  { })(xα  results in 
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Solving for the coefficient vector { })(xα and substituting the resulting 

expression into Eq. (12) gives 
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where the interpolation function vector { }Φ  is shown as 
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The interpolation function, Eq. (17), is applied the weighted residual 

formulation as described in the previous section in order to develop the 

Element-Free Lattice Boltzmann Method (EFLBM). 

This interpolation function vector is different from that used in the 

finite element method. For the latter, the interpolation function vector 

satisfies the following relationship 
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For the derivative of [ ] 1)( −
xA , the following expression is used [4]. 
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4. Numerical Results and Discussion 

 

The first example was a two-dimensional steady-state Poiseuille flow 

between two parallel walls.  The EFLBM was applied to solve the 

problem and compared in Fig. 2. In order not to make the figures too 

crowded, separate figures were plotted for each comparison.  Both 

EFLBM and FELBM solutions agreed very well with the analytical 

solution. In this as well as subsequent figures, unless otherwise 

mentioned, all velocities were normalized with respect to the maximum 

velocity value.  In addition, the distance was normalized in terms of the 

wall spacing.  

The second example was a two-dimensional unsteady Couette flow 

between two parallel plates with spacing h , one of which was stationary 

while the other began to move at a constant velocity U .  The EFLBM 

and FELBM solutions are compared to the analytical solution as a 

function of time in Fig. 2.  They all agreed very well.   

The last example was a cavity driven flow.  The top side was subject to 

a contact velocity u and the other sides were rigid walls.  The Reynolds 

number ν/ud was considered to be 100, where d  is the dimension of a 

square cavity, and ν  is the fluid viscosity.  The present FELBM solution 
was compared to the solution in Ref. [5].  Figure 3 shows the horizontal 

velocity profile along the vertical centerline of the domain and the 

vertical velocity profile across the horizontal centerline of the domain. 

Both velocities agreed very well between the two solutions. 

 

5. Conclusions 

 

The FELBM and EFLBM were developed from the lattice Boltzmann 

equation by applying the weighted residual formulations. These 

techniques allow users to model any complex shape of domain in 2-D or 

3-D.  As a result, theses techniques will be used for the fluid-structure 

interaction analysis code.  Especially, FELBM will be extended further 

for subsequent work because of its maturity and compatibility with 

structural finite element models. 
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Fig.1 D2Q9 and D3Q15 lattices showing discrete 9 and 15 velocity 
vectors, respectively. 
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Fig. 2  Plots of the normalized velocity profiles for Plane Poiseuille (left) 
and unsteady Couette (right) flows. 
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Fig. 3.  Horizontal (left) and vertical (right) velocity profiles along each 
centerline of the domain.  
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