
- 875 -

The verification methodologies for a software modeling of Engineered Safety Features–

Component Control System (ESF-CCS)

Young-Jun Lee, Se-Woo Cheon, Kyung-Ho Cha, Gee-Yong Park, Kee-Choon Kwon

Korea Atomic Energy Research Institute (KAERI)

P.O. Box 105, Yuseong, daejeon, Korea

1. Introduction

The safety of a software is not guaranteed through a

simple testing of the software. The testing reviews only

the static functions of a software. The behavior,

dynamic state of a software is not reviewed by a

software testing.

The Ariane5 rocket accident[7] and the failure of the

Virtual Case File Project[8] are determined by a

software fault. Although this software was tested

thoroughly, the potential errors existed internally.

There are a lot of methods to solve these problems. One

of the methods is a formal methodology. It describes the

software requirements as a formal specification during a

software life cycle and verifies a specified design.

 This paper suggests the methods which verify the

design to be described as a formal specification. We

adapt these methods to the software of a ESF-CCS

(Engineered Safety Features-Component Control

System) and use the SCADE (Safety Critical

Application Development Environment) tool for

adopting the suggested verification methods.

2. The interface of the ESF-CCS software

ESF-CCS is a system which operates Engineered

Safety Features System Components after receiving an

initial signal of a ESF from a Plant Power System (PPS)

and Radiation Monitoring System (RMS)[5]. Also, it

performs control functions of every safety related

component including the component related to a ESF-

CCS. ESF-CCS consists of a Group Controller (GC),

Loop Controller (LC), ESF-CCS Test and Interface

Processor (ETIP), Cabinet Operator Module (COM),

Communication Device and a Man-Machine Interface

(MMI) Component. Figure1 shows the interface of the

ESF-CCS software.

[Figure 1] The interface of ESF-CCS software

3. The verification methods for the ESF-CCS

ESF-CCS defines the software behavior with the models

which are described in the Software Requirement

Specification and the Software Design Specification.

We will perform a verification about these models to

confirm whether these software behaviors are operated

exactly or not.

The verification about a software is tired through a

three-stage process as a Model Semantics, Simulation,

and Formal Verification about software models. The

three-stage process is as follows:

1) Model Semantics

Specified models are thoroughly checked before a

simulation code or target code is generated. The syntax

checking, semantic checking, and cycle detection are

performed to review the model semantics.

� Syntax checking

Syntax checking evaluates whether the model is

syntactically correct with respect to the graphical and

textual formalism used in the Language.

� Semantic checking

Semantic checking determines whether the model

conforms to the Language semantics. For instance, the

model topology must be consistent, with no orphan

states or missing connections.

� Cycle detection

When designing the State of a software, although we

may create a model that is syntactically correct, it may

nevertheless be inconsistent. When this happens,

because of the instantaneous emission of signals, the

concurrent presence of signals may end up in algebraic

loops. In this case, we will have to modify our design

when such cycles are detected.

2) Model Simulation

Simulation is one of the most common methods of a

verification used since the 1960s[6].

We use a simulation to run interactive sessions to

dynamically check a model. It grasps whether the

software is operated normally and then creates the

expected outputs or not.

3) Formal Verification

Transactions of the Korean Nuclear Society Autumn Meeting
PyeongChang, Korea, October 25-26, 2007

- 876 -

Formal verification is a systematic process of ensuring,

through exhaustive algorithmic techniques, that a design

implementation satisfies the requirements of its

specification. By using a formal verification method, all

possible executions of the design are mathematically

analyzed without the need to develop simulation input

stimulus or tests.

4. SCADE Tool

We performed the suggested verification methods with

the SCADE (Safety Critical Application Development

Environment) tool. SCADE Tool was developed by the

Esterel-technology Corporation. It is an integrated

development environment for developing a safety

critical embedded software[9].

The SCADE uses the Lustre language graphically and

supports Safe State Machine (SSM) to present control

flow. It also supports a syntax checking, semantic

checking, and cycle detection function and it can do a

simulation. The design verifier in SCADE can verify the

behavior of software models. Figure2 shows the editor

and simulator of the SCADE.

[Figure 2] The SCADE tool

5. Conclusion

ESF-CCS is an engineered safety system which is used

in a safety system of a plant power system and is being

developed through a software lifecycle process. To

represent the functions and behaviors of a software, a

model specification language is used for a software

requirement specification, software design specification.

We tried to do a model verification to confirm whether

the software has a safety feature and a reliability or not.

We suggested 3-stage process to do a verification about

the software models and tried to utilize these methods

with the SCADE tool. The 3-stage processes consist of a

model semantic, simulation and a formal verification. A

model semantic checks a syntax and semantic of a

specified model. A simulation checks the functions of a

model dynamically. A formal verification analyzes an

abnormal state of a software model after checking its

behaviors.

The verification of the 3-stage process guarantees that

the software model is implemented exactly and is

operated errorlessly.

REFERENCES

[1] USNRC Reg. Guide 1.152, Rev.02, Feb. 2006, “Criteria

for Programmable Digital Computers System Software

in Safety Related Systems of Nuclear Power Plants”

[2] IEEE Std. 7-4.3.2, 2003, “Standard Criteria for Digital

Computers in Safety System of Nuclear Power

Generating Stations”

[3] IEEE Std. 829-1998, “IEEE Standard for S/W Test

Documentation”

[4] IEEE Std. 1008-1987, “IEEE Standard for Software

Unit Testing”

[5] KAERI, “ESF-CCS Software Requirement

Specification” KNICS-ESF-SRS221

[6] Douglas L. Perry, Harry D. Foster, “Applied Formal

Verification” McGraw-Hill, Electronic Engineering

[7] Peter B. Ladkin, “The Ariane 5 Accident: A

Programming Problem?”, http://www.rvs.uni-

bielefeld.de/publications/Reports/ariane.html#Reference

s

[8] Harry Goldstein, “Who Killed the Virtual Case File?”.

IEEE Spectrum September 2005.

[9] SCADE User Manual, Esterel-Technologies.

Transactions of the Korean Nuclear Society Autumn Meeting
PyeongChang, Korea, October 25-26, 2007

	분과별 논제 및 발표자

