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1. Introduction 

 

This paper analyzes the convergence of the rebalance 

methods
1,2 

(e.g., Coarse-Mesh Rebalance (CMR), 

Coarse-Mesh Finite Difference (CMFD), and p-CMFD) 

for accelerating the power iteration method of the 

discrete ordinates transport equation in the eigenvalue 

problem
3
. The convergence analysis is done with the 

well-known Fourier analysis method through a 

linearization both for spatially continuous and 

discretized forms of one and two energy group transport 

equations in an infinite medium. 

 

2. Theory and Methodology 

 

Although the analysis was performed both for the 

spatially continuous and discretized cases of the one and 

two-group problems, the description of the analysis is 

given only for the spatially continuous forms of the 

discrete ordinates transport equations and the rebalance 

equation for the two-group eigenvalue problem for 

simplicity. They are given by 
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In Eq.(1), l  is the outer iteration index, one inner 

iteration (i.e., one transport sweeping) for each outer 

iteration is assumed, and ±
D represents the correction 

factor for preserving the partial currents in the rebalance 

equation. It should be noted in Eq.(1b) that there is no 

equation for updating the multiplication factor. These 

equations are linearized around the fluxes and the 

multiplication factor of the infinite medium. The 

resulting linearized equations are given by 
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and  
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In Eq.(2), 
Rgσ is the removal cross section. ξ , ζ , 

and δ are the first-order terms in ε of the angular flux 

(ψ ), scalar flux ( φ ), and 1/(keff), respectively. To 

perform the Fourier analysis, the following ansatz are 

introduced : 
llxj

g

ll

g

xj

mg

ll

mg beaeA 0,

2/1

, ,, ϖδϖζϖξ λλ ===+           (3) 

 

In this equation, ϖ is the eigenvalue of the power 

iteration and 0ϖ is the eigenvalue for the fundamental 

mode. In Eq.(3), it is noted that the ansatz δ has no 

spatial dependency because the multiplication factor has 

no dependency on x. A simple algebra shows the 

fundamental eigenvlaue ( 0ϖ ) is zero. Substituting 

Eq.(3) into Eq.(2) gives the eigenvalue as a function of 

the frequency (λ ) and the spectral radius is the largest 
eigenvalue in an absolute value. In this paper, we 

omitted the detailed expression of the spectral radius for 

simplicity. In fact, it is not difficult to show that the 

spectral radius of the power iteration can be obtained by 

using the one of the outer iteration for a fixed source 

problem but using the following transformation of the 

cross sections : 
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3. Numerical Analysis and Discussion 

 
For the numerical analysis, we chose a reference set 

of the cross sections. This reference set of the cross 

sections is given in Table 1. We used only p-CMFD, the 

step characteristic (SC) method, and S10 angular 
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quadrature set for the numerical test although our 

formulation is general. 

 

Table 1: Reference set of the cross sections 

for the benchmark problem 

1σ  
1sσ  

21→σ  
1fνσ  

Group 1 
0.3 0.27 0.01 0.008476 

2σ  
2sσ  

12→σ  
2fνσ  

Group 2 
1.0 0.9 0.001 0.18514 

 

We consider the following four cases : the first case 

(Case I) is the reference described above, 2) the second 

case(Case II) has the same cross sections as the 

reference case but it has increased self-group scattering 

cross sections ( 29.02111 =−= →σσσ s
and 

999.01222 =−= →σσσ s
), and the third case (Case III) 

is the same as the reference case but it has different 

fission cross sections given by )( 21111 →∞ −−= σσσνσ sf k and 

)( 12222 →∞ −−= σσσνσ sf k  in which 
∞k is the infinite 

multiplication factor of the reference case, and the 

fourth case (Case IV) is the same as the reference case 

but it has artificially large fission cross sections given 

by 0.1021 == ff νσνσ . Fig.1 compares the spectral radii 

versus mesh size for the fixed source and eigenvalue 

problems for the reference case. It is shown that the 

spectral radius of the eigenvalue problem is larger than 

that of the fixed source problem and their difference is 

larger in the large mesh size region than in the small 

mesh size region. 
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Fig. 1. Spectral radii versus mesh size (reference case) 

 

Fig. 2 compares the spectral radii of the four cases for 

the eigenvalue problem. This figure shows that the 

spectral radius of the power iteration depends both on 

the fission cross sections and the scattering matrix but 

its dependency on the fission cross sections is not strong. 

For numerical test, a benchmark problem is devised. Its 

size is 1000cm and it has the cross sections of the 

reference case described above. The vacuum boundary 

conditions are imposed both on the left and right 

boundaries. The point-wise convergence criteria of 10
-7
 

and 10
-12
 on the fission source are used for the transport 

and rebalance equations, respectively. In these 

calculations, we considered the four mesh sizes given in 

Table 2. 
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Fig. 2. Comparison of spectral radii versus mesh sizes 

 

Table 2 compares the numerical spectral radii and the 

theoretical ones for this benchmark problem. As shown 

in Table 2, the theoretical predicted spectral radius has a 

good agreement with the numerically estimated spectral 

radius. Table 2 shows that the power iteration without 

the acceleration has very slow convergence (spectral 

radius ~1.0). In fact, it is possible to show that the 

power iteration without the acceleration has unity 

spectral radius irrespective of the cross sections and the 

mesh sizes for eigenvalue problem. As a conclusion, our 

analysis provides a theoretical base of the convergence 

of the power iteration for the discrete ordinates transport 

equation. 

 

Table 2: Comparison of the numerical and theoretical 

spectral radii 
Without p-CMFD With p-CMFD Mesh size 

(cm) N ρth ρnu N ρth ρnu 

2.0 35463 1.0 0.9996 11 0.269 0.248 

5.0 26432 1.0 0.9995 12 0.312 0.268 

10.0 16853 1.0 0.9991 11 0.258 0.232 

20.0 9537 1.0 0.9985 8 0.162 0.124 
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