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1. Introduction 

 
Since nuclear plant operators are provided with only 

partial information in case of a loss of coolant accident 

(LOCA) or they may not have enough time to analyze it 

although they are provided with considerable 

information, it is very difficult for operators to predict 

the progression of the accident. Therefore, its break 

location should be identified and the break size should 

be accurately predicted to provide operators and 

technical support personnel with important and valuable 

information to successfully manage the accident. In this 

paper, support vector machines (SVMs) are applied to 

identifying the break location of a LOCA and to 

predicting the break size by using support vector 

classification (SVC) and support vector regression  

(SVR) which are the well-known application areas of 

SVMs. 

 

2. Support Vector Machines 

 

SVMs are learning systems that use a hypothesis 

space of linear functions in a high dimensional feature 

space. They are trained with a learning algorithm that 

originated from the theoretical foundations of the 

statistical learning theory and structural risk 

minimization. 

 

2.1. Identification of Break Location  

 

Binary pattern classification methods construct a 

decision rule to classify data vectors into one of two 

classes based on a training data set whose classification 

is known a priori. That is, usual classification problems 

are given N  training data { }
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{ }1, 1iy ∈ + − , from which an input-output relationship 

is learned. Each training data ix  belong to a class by 

{ }1, 1iy ∈ + − . 

In case that two classes can be divided linearly, data 

classification is accomplished by defining a hyperplane 

which divides the training data set T so that all the 

training data points of the same class are on the same 

side of the hyperplane while maximizing the distance 

between the hyperplane and the data point nearest to the 

hyperplane [refer to Fig. 1]. The boundary can be 

expressed as follows: 
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where the vector w and the bias b  determine the 

boundary. The hyperplane which optimally separates the 

data is solved by minimizing the following functional: 
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Fig. 1. Binary classification by a SVC model.  

 

In case the linear boundary in the input spaces can not 

separate the two classes properly, a hyperplane is 

established in high dimensional feature space and the 

nonlinear classification is replaced by a linear 

classification problem. The hyperplane is then 

constructed in this feature space that bisects the two 

categories and maximizes the margin of separation 

between itself and those points lying nearest to it, as 

shown in Fig. 1.  

 

2.2. Prediction of Break Size 

 

Along with the introduction of Vapnik’s ε -

insensitive loss function [1], the SVMs have also been 

extended and widely used to solve nonlinear regression 

problems. The SVR model is given N  training data 
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= ∈ ×x  where ix  is the input vector 

to the SVR model and iy  is the actual output value, 

from which it learns an input-output relationship. The 

SVR model can be expressed as follows [2]: 
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The parameters w  and b  are a support vector weight 

and a bias that are calculated by minimizing the 

following regularized risk function: 
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Here, λ  and ε  are user-specified parameters and 

ε
)(xfyi −  is called the ε -insensitive loss function [1]. 

The loss equals zero if the estimated value is within an 

error level ε , and for all other estimated points outside 

the error level ε , the loss is equal to the magnitude of 

the difference between the estimated value and the error 

level ε . 

 

3. Verification of the Proposed Algorithm 

 

To verify the proposed algorithm, it is necessary to 

acquire data that are needed to train the SVC and SVR 

models from a number of numerical simulations since 

there are few real LOCA data. The data were acquired 

in a previous work [3] by simulating postulated LOCAs 

for the advanced power reactor 1400 (APR1400) using 

the MAAP4 code. The simulations are composed of 40 

cold-leg LOCAs, 40 hot-leg LOCAs, and 40 SGTRs. 

The 120 accident simulations are divided into both 

training simulation data and test simulation data. The 

training data are used to train the SVC and SVR models, 

and the test data are used to independently verify 

whether the SVC and SVR models work well or not.  

In this paper, two SVC models are employed to 

classify three kinds of events according to the break 

locations. The two SVC models are trained so that they 

categorize the hot-leg LOCA, the cold-leg LOCA, and 

the SGTR as (1,1), (1, -1), and (-1,-1). The input 

variables to the SVC models are the time-integrated 

values after reactor scram as follows:  
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where 
s
t  is scram time and t∆  is integration time span. 

It was known that SVC models can accurately 

identify break locations. Figure 2 shows the target and 

predicted break sizes for hot-leg LOCAs by using the 

SVR models with the four input variables.  

In order to investigate the effect of the measurement 

error, three kinds of measurement errors are assumed: 

+5% error, -5% error, and random error. Even under 

these errors, the SVC models identify the accident types 

without any fault. Also, even though the error 

magnitude of the SVR models increases in this case, it is 

shown in Fig. 3 that the SVR models can still accurately 

predict the break size. 

The accident simulation data are accurate at least in 

an early accident phase. And the proposed algorithm 

uses only initial phase data after reactor scram. 

Therefore, the proposed algorithm can appropriately be 

applied to real nuclear power plants although it has been 

developed on the basis of the numerical simulations. 
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 Fig. 2. Predicted break size (hot-leg LOCA). 
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Fig. 3. Predicted errors in case measurement errors exist 

(hot-leg LOCA). 

 

4. Conclusion 

 

SVC models have been designed to identify the break 

locations of LOCA accidents by using the short 

time(60sec)-integrated values of 13 measured signals 

after reactor scram. Also, SVR models have been 

designed to predict the break size by using the short 

time(60sec)-integrated values of four measured signals 

after reactor scram. It is known that the proposed SVC 

models can accurately classify the break locations into 

three kinds of categorized events. Also, simulation 

results confirm that the proposed SVR models can 

accurately predict the break size. 
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