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1. Introduction 

 
Monte Carlo (MC) particle transport codes [1,2] have 

been successfully used to precisely analyze various 

nuclear systems with the help of an increasing 

computing power. However their considerable 

computation time makes it impossible for the MC 

method to prevail over deterministic methods for a 

neutronics analysis like discrete ordinate transport codes 

or diffusion theory codes. On the other hand, the 

deterministic codes require reliable multigroup cross-

sections which have been collapsed over an appropriate 

flux spectrum. Especially, macroscopic cross-sections in 

homogenized regions are needed for the few-group 

nodal diffusion calculations. 

The purposes of this paper are to implement a 

multigroup cross-section generation capability into 

McCARD (Monte Carlo Code for Advanced Reactor 

Design and analysis) [2] and to compare its calculation 

results with commercial lattice codes. This work will 

enable the users to generate accurate multi-group cross-

sections using a precise geometry model and continuous 

energy cross-section libraries. 

 

2. Methods and Results 

 

2.1 Fine Group Cross-Section Generation 

 

The group-averaged microscopic cross-section for 

region m of volume Vm, isotope i, reaction x and energy 

group g, ∆Eg, is defined by 
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where ( , , )Eφ r Ω  denotes the angular flux. 

The numerator and denominator in Eq. (1) indicate a 

microscopic reaction rate and an average flux, 

respectively, in region m and energy group g. And using 

the MC track length estimators, they can be estimated 

by 
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<x>  means the expected value of x. wl, El, and Tl denote 

a weight, energy, and track length of neutron’s l-th track. 

Assuming that the regional reaction rate is independent 

of the regional flux, the relative error of the microscopic 

cross-section can be calculated by 
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[ ]err x  denotes the relative error of x defined by one 

estimated standard deviation of x  over the estimated 

mean of x, x . 

The group-averaged macroscopic cross-section for a 

homogenized region of volume V defined as below can 

be calculated in the same way to estimate the 

microscopic cross-section. 
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( , )
x

EΣ r  denotes the macroscopic cross-section of 

reaction x at location r and energy E. 

Especially, the n-th coefficient of the Legendre 

expansion of the group-to-group scattering cross-section 

is written as [3] 
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( , )n

s
E E′Σ →r  and ( , )n Eφ r  denote the n-th Legendre 

components of the double differential scattering cross-

section and the angular flux, respectively. 
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In the MC neutron simulations, it is extremely 

difficult to estimate the Legendre components of the 

angular flux beyond an order of 0 because the 

components will approach zero if the neutron flux is 

nearly isotropic in many applications. Assuming that the 

energy dependencies of the Pn fluxes are proportional to 

that of the P0 flux, the following approximation is made 

[4] 
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Then the Pn group-to-group scattering cross-section 

can be calculated by 
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2.2 Few Group Cross-Section Generation 

 

For a homogenized system, the criticality spectrum 

can be found by the following B1 equations with fine 

group cross-sections [5] 
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g
φ  and 

g
J  are defined by 
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B
2
 denotes the buckling and ( )

g
Bα  is defined by 
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The fission source of ,f g g

g

ν φ′ ′
′

Σ∑ is normalized to k 

denoting the multiplication factor and 
g

χ  is the fission 

spectrum of energy group g. 

Then using 
,B g

φ , 
,B g

J  and B1 satisfying k=1, the 

group-wise diffusion coefficient can be calculated by 
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Finally, the fine group macroscopic cross-section 

including 
g

D  is condensed to a few-group cross-section 

as 
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2.3 Application Results 

 

The macroscopic cross-sections to solve a two-group 

diffusion equation were generated using McCARD for a 

Westinghouse-type fuel assembly with 16 Gadolinia 

burnable poison rods. Table I shows a comparison with 

results from the lattice physics codes CASMO [6] and 

HELIOS [7]. From the table, we can see that the two 

group constants calculated by McCARD agree well with 

those from HELIOS. 

 

Table I. Comparison of Two Group Constants 

McCARD 
Rel. Diff. from 

McCARD (%) 
 

xs 
RSD* 

(%) 
HELIOS CASMO 

2

1
B  2.37020E-03 - 1.14 0.58 

D1 1.47856E+00 0.09 -0.67 1.49 

,1a
Σ  9.64119E-03 0.08 0.14 0.38 

,12s
Σ  1.52717E-02 0.09 -0.27 1.58 

,1f
νΣ  6.94361E-03 0.06 0.35 2.86 

D2 5.08171E-01 0.09 1.16 -6.45 

,2a
Σ  9.54533E-02 0.11 -0.33 0.02 

,2f
νΣ  1.35712E-01 0.10 -0.05 -0.77 

kinf(2gr) 1.15026 - 0.20 0.17 

kinf 1.14934 0.04 0.28 0.25 

* RSD denotes the relative standard deviation. 

 

3. Conclusions 

 

We augmented the McCARD usability with a 

multigroup cross-section generation capability. This 

work will enable its users to directly generate multi-

group cross-sections by the MC method. 
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