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1. Introduction 

 

In this study, the multi-fluid implicit scheme has been 

developed to eliminate the material Courant time step 

restriction. The multi-fluid implicit scheme in which the 

momentum convection terms are solved implicitly is 

provided as an alternative option for steady-state 

calculations and for slowly varying, quasi-steady transient 

calculations. The multi-fluid implicit method involves one 

predictor and two corrector steps and one stabilization 

step. After the series of predictor and corrector steps, the 

corrected velocities satisfy the continuity and momentum 

equations more closely, compared to semi-implicit scheme. 

The final step in the module is the solution of the 

stabilizer mass and energy equations. The stabilization 

step is used to stabilize the convective terms in the mass 

and energy balance equations. 

 

2. General Description of Multi-Fluid Implicit Scheme 

 

In the multi-fluid implicit scheme, because the 

momentum flux terms are implicit, the momentum 

equations cannot be directly solved to obtain a linear 

relationship between velocity and pressure gradient as 

done in the reference[1]. Therefore, the multi-fluid 

implicit method splits the solution procedure into a series 

of predictor-corrector steps and stabilization step.  

In predictor step, discretized momentum equations are 

solved with the pressure field of previous time step to give 

intermediate velocities.  

In first corrector step, the convection terms of 

momentum equations are discretized in explicit manner 

with the intermediate velocities. Then, the discretized 

momentum equation gives a linear relationship between 

velocity and pressure gradient as done in the semi-implicit 

scheme. A single pressure equation can be derived by 

substituting this relationship to the implicit velocity terms 

of mass and energy conservation equations, and inverting 

the cell matrix. This is done for each cell, giving rise to 

the system pressure matrix. Thus, only an N x N system of 

pressure equations is solved simultaneously at each time 

step, where N is the total number of cells used to simulate 

the fluid system. After the system pressure matrix is 

solved, the intermediate solutions for other primitive 

variables are obtained by the back substitution.  

In second corrector step, the same procedure as the first 

corrector step is taken once more in order to obtain the 

final solutions for phasic velocities and pressures. 

Provisional new time values for phasic volume fractions 

and phasic temperatures can also be obtained.  

The stabilization step is used to stabilize the convective 

terms in the mass and energy balance equations. The flux 

terms in mass and energy equations are evaluated 

implicitly at the new time, as compared to their explicit 

evaluation in the corrector steps. The stabilization step 

provides the final solutions for phasic volume fractions 

and phasic temperatures with the new variables known. 

 

3. Steps of Multi-Fluid Implicit Scheme 

 

The split-operator scheme, in which operations are split 

into a series of predictor-corrector steps, is applied for the 

solution of the discretized equations. Let the superscripts 

~, *, and ** denote intermediate field values obtained 

during the splitting process 

 

3.1 Predictor step 

The equations for momentum are solved in this step 

implicitly, using the pressures of previous time step. To 

yield the °U  velocity field, the following matrix form is 

used. 
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3.2 First corrector step 

The first corrector step is introduced to give a new 

velocity field (U
*
) together with a corresponding new 

pressure field (P
*
). The convection terms of the 

momentum equations are taken as the known velocities 

( °U ) instead of velocities discretized implicitly. As in 

semi-implicit algorithm, the momentum equations can be 

expressed in the following matrix form: 
* *
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3.3 Second corrector step 

A new velocity field, U
**
, together with its 

corresponding new pressure field, P
**
, is formulated as the 
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explicit type equation. The momentum equations can be 

expressed in the following matrix form: 
*** **

** ** *
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Once the second pressure corrections are known, the 

velocity components can also be obtained through a linear 

relationship between velocity and pressure gradient. The 

U
**
 field and the P

** 
field are approximations of the exact 

solution nU
 
and nP . As in the paper of Issa [2], the 

accuracy with which U
**
 and P

**
 approximate the exact 

solutions is sufficient for most practical purposes, which 

makes further corrector steps superfluous. Therefore, only 

two corrector steps are taken in order to obtain the 

velocity and pressure fields at every time step 

 

3.4 Stabilizer step 

This step is used to stabilize the convective terms in the 

mass and energy balance equations. This step uses the 

velocities from the second corrector step. 

 

4. Test results 

 

4.1 Single phase liquid injection test (1D) 

This test used a straight vertical pipe of 10 volumes 

(each 1m in length). The subcooled liquid was injected at 

the velocity, 1.0 m/s, through the bottom junction. This 

simulation was carried out with time step 5s and 10s, 

which are 5 to 10 times the material Courant limit. The 

results show that the multi-fluid implicit scheme module 

is able to achieve stability for time steps that exceed the 

material Courant limit and give sufficiently accurate 

predictions when a numerical simulation is for a basically 

quasi-steady process. 
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Figure 1 Pressure variation during the liquid injection test 

 

4.2 Single phase liquid injection test (2D) 

This problem was a two-dimensional single phase 

liquid cavity flow problem. The test domain consisted of 

25 uniform regular hexahedrons. The inlet boundary 

condition was given at the lower left corner of the 

rectangular cavity, and the outlet boundary condition was 

given at the upper right corner. This simulation was 

carried out with time step 5s, which is 5 times the material 

Courant limit. 

Fig. 2 shows the velocity vectors at the cells. The 

cavity flow is mainly formed along the bottom and the 

right walls. The remaining part of the cavity shows a flow 

pattern of swirl. This indicates that the material Courant 

time step can be violated using the multi-fluid implicit 

scheme. 

 
Figure 2 Velocity vector distribution 

 

5. Conclusion 

 

The multi-fluid implicit scheme module has been 

developed to eliminate the material Courant time step 

restriction. The multi-dimensional three-field pilot code 

using the multi-fluid implicit scheme can be used for 

steady-state calculations and for slowly varying, quasi-

steady transient calculations.  The predictions of transient 

behaviors using the scheme show stability for time steps 

that exceed the material Courant limit and accurate results 

as in the semi-implicit scheme. Consequently, it is 

expected that the computation time is much reduced 

compared to the semi-implicit scheme. 
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