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1. Introduction 

 
For the visualization of the phase distribution in   two 

phase flows, the electrical resistance tomography (ERT) 
technique is introduced. In ERT, the internal resistivity 
distribution is reconstructed based on the known sets of 
the injected currents and measured voltages on the 
surface of the object. The physical relationship between 
the internal resistivity and the surface voltages is 
governed by a partial differential equation with 
appropriate boundary conditions. 

This paper considers the estimation of the phase 
distribution with ERT in two phase flow in a horizontal 
flow using extended Kalman filter. 

To evaluate the reconstruction performance of the 
proposed algorithm, the experiments simulated two 
phase flows in a horizontal flow were carried out. 

The experiments with two phase flow phantom were 
done to suggest a practical implication of this research 
in detecting gas bubble in a feed water pipe of heat 
transfer systems. 

 
2. Mathematical Method 

 
2.1 Finite element formulation of the forward problem 

 
The numerical model used in this paper is based on 

EIDORS[1]. The finite element model to solve the 
electrical resistance tomography problem can be found 
in Vauhkonen[2]. However, the finite element 
approximation should be described here briefly to 
formulate the inverse solution. 

When electrical current I A  is injected into the object 
2Ω∈\  through the A th electrode e

A
 attached on the 

boundary ∂Ω  and the conductivity distribution ( , )x yσ  
is known over Ω , the corresponding electrical potential 

( , )u x y  on the Ω can be determined uniquely from the 
so-called complete electrode model in the form  
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where L  is the number of electrodes, v  stands for the 
outward normal unit vector on the surface ∂Ω , zA  is 

the contact impedance and U A  is the measured 
boundary potential. In addition, the following two 
constraints for the injected currents and the measured 
voltages should be imposed to ensure the existence and 
uniqueness of the solution. 
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In the context of finite element method(FEM), the 

object area is discretized into sufficiently small 
triangular elements having a node at each corner and it 
is assumed that the resistivity distribution is constant 
within each element mesh. The potential distribution u  
within the object is approximated as 
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and the potential on the electrodes is represented as 
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where the function iφ  is two-dimensional first order 
basis function and the bases for the measurements are 

1 (1, 1, 0, ..., 0)Tn = − , 1

2 (1, 0, 1, 0, ..., 0)T Ln ×= − ∈\ , etc. 

in this, iα  and iβ  are the coefficients to be determined. 
 

2.2 Extended Kalman Filter 
 

In order to enhance the temporal resolution of ERT, 
Kalman filter approaches have been widely 
accepted[1][3][4]. We consider the underlying inverse 
problem as a state estimation problem to estimate 
rapidly resistivity distribution. In the state estimation 
problem, we need the dynamic model that consists of 
the state equation, i.e., an equation for the temporal 
evolution of the resistivity and the observation equation, 
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i.e., and equation for the relationship between the 
resistivity and boundary voltages. In general, the 
temporal evolution of the resistivity distribution kρ  in 
the object Ω  is related by the nonlinear mapping. Here, 
the state equation is assumed to be of the linear form, of 
which the modeling uncertainty is compensated by the 
process noise 

 

1k k k kF wρ ρ
+
= +                                                    (8) 

 
where N N

kF R ×∈  is the state transition matrix at time k  
and N  is the number of finite elements in the finite 
element mesh. In particular, we take k NF I=  where 

N N

NI R ×∈  is an identity matrix, to obtain the so-called 
random-walk model. It is assumed that the process error 

kw  is white Gaussian noise with the covariance that 
determines the rate of changes in resistivity distribution: 
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We obtain the recursive EKF algorithm that consists 

of the following two steps[5]. 
 
1) Measurement update 
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3. Results and Reconstructed Images 
 

To evaluate the reconstruction performance of the 
proposed algorithm, the experiments simulated two 
phase flows in a horizontal flow were carried out.  

 The experimental setup consists of a circular 
phantom with a radius of 150 mm and a height of 100 
mm was considered around which 16 electrodes have 
each of length 26 mm were mounted. As for the current 
injection protocol, opposite current patterns are used.  
In the experiment, 8 image frames are considered and 
each image frame comprises of 8 current patterns. It is 
assumed that different sized circular bubbles appear in 
the upper   region and move fast.  

Figure 1 can be seen that EKF is performing well in 
terms of reconstructed resistivity distribution. The 
experiment proved the positions and size of the objects 
simulated the gas bubbles. 

 

1st frame

2nd frame

3rd frame

4th frame

5th frame

6th frame

7th frame

8th frame  
 

Fig. 1. Reconstructed images for the laboratory experiment. 
 

4. Conclusions 
 

In this paper, extended Kalman filter (EKF) is 
proposed as an image reconstruction algorithm in 
electrical impedance tomography to estimate the fast 
transient changes in resistivity distribution in horizontal 
two-phase flows. The experimental results proved the 
positions and size of the objects simulated the gas 
bubbles. 

The experiments with two phase flow phantom were 
done to suggest a practical implication of this research 
in detecting gas bubble in a feed water pipe of heat 
transfer systems. 
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