
Transactions of the Korean Nuclear Society autumn Meeting 
PyeongChang, Korea, October 30~31, 2008 

The validation region of the Boussinesq approximation  
for nuclear reactor operation and atmospheric pressure conditions 

 
Hyuk Kwon a∗, K. W. Seo and D. H. Hwang 

a Department of Reactor System Tech. Development, Korea Atomic Energy Research Institute 
, 150, Dukjin-dong, Yuseong, Daejeon, 305-353, Korea 

*Corresponding author: kwonhk@kaeri.re.kr 
 

1. Introduction 
 

In natural convection problem, buoyancy term is 
important than other terms. An exact solution fully 
considering the buoyancy term has not existed until 
now. Some approximation is required to asses the 
engineering problem. The Boussinesq approximation is 
the simplest among the other methods. The 
approximation is derived based on the following: 

1. Density is assumed constant except the momentum 
equation. 

2. All other fluid properties are assumed constant. 
3. Viscous dissipation is negligible. 

These assumptions constricted application region of the 
Boussinesq approximation. From condition 1 and 2, the 
approximation is constricted in the incompressible 
liquid  region. Condition 3 constricted that the acoustic 
phenomena cannot be treated.  
   The constriction, however, is so abstract as not to 
asses the validation of the Boussinesq approximation 
with the problems, directly.  The present study allows 
an explicit region of the validity of the Boussinesq 
approximation. This means that a solution about natural 
convection can be meaningful only when the conditions 
under which the approximation is valid are explicitly 
known.  
   Investigation of the explicit region was made by 
Spiegel and Veronis[1]. They used an order of 
magnitude method for a perfect gas. Mihaljan[2] 
derived the Boussinesq equations on the thin layer flow 
using the small parameter expansion technique. Gray[3] 
expanded the Mihaljan’s method to the liquid  and 
considered all fluid properties to vary with temperature 
and pressure.  Present study expanded the Gray’s result 
to the condition of the nuclear reactor operation region 
and severe accident condition.  
  The results will show the validity and limitation region 
of the Boussinesq approximation applicable to the 
severe accident analysis.   
     

2. Derivation and Results 
 
2.1 Formulation and Problem description 

 
The derivation of the approximation begins with the 

general governing equations for a Newtonian fluid of 
variable properties and zero second viscosity. The 
tensor forms of these equations are followings[4]: 
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In order to complete these equations, there are 

required to determine the relationship of the fluid 
properties. These necessary property equations are 
approximated by the Taylor linear expansion following 
as: 

( ) ( )1o o o o oT T P Pρ ρ α β= − − + −⎡ ⎤⎣ ⎦  
( ) ( )1p po o o o oc c a T T b P P= + − + −⎡ ⎤⎣ ⎦  
( ) ( )1o o o o oc T T d P Pμ μ= + − + −⎡ ⎤⎣ ⎦  
( ) ( )1o o o o oe T T f P Pα α= + − + −⎡ ⎤⎣ ⎦  
( ) ( )1o o o o oK K g T T h P P= + − + −⎡ ⎤⎣ ⎦  

, where ρ  is density; poc , heat capacity; μ , dynamic 
viscosity; α , thermal expansion coefficient; K  
thermal conductivity.  

To simplify the problem, one will consider the 
Benard-convection problem as shown in Fig. 1. Two 
conditions are investigated on the problem, atmospheric 
condition and reactor operation condition. Atmospheric 
condition is related to the severe accident problem. 

 
Fig. 1. Control volume of the Rayleigh-Benard problem. 
 
2.2 Boussinesq approximation equations 

 
Nondimensionalized equations are derived using the 

nondimensionalized parameter as table 1. Velocity is 
nondimesionalized using the “free-fall” velocity of a 
thermal.  
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Table I: Non-dimension parameters 

 Dimensional 
parameter 

Non-dimensionalized 
parameter 

Length ix  ix
L

 

Temperature oT T−  o

s o

T T
T T
−
−

 

Velocity iV  i
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time t  o g L
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Dynamic 
pressure sP P−  ( )
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Pressure 
difference oP P−  o
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P P
gLρ
−  

Stress tensor ijΓ  ij
o

L
gα θ

Γ
 

Dissipation 
term Φ  

o

L
gα θ

Φ
 

 
Boussinesq approximation equations are derived 

considering some approximation related to the order of 
magnitude. Coefficients of equations have the order of 
magnitude less than 0.1. and other terms are assumed as 
the order 1. Extended Boussinesq equations are 
following as[3], 
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2.3 Valid rage of the Boussinesq approximation 
 

Inequalities to determine the valid region is derived  
in the used approximation on deriving the extended 
Boussinesq equations.   
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Fig. 2. Valid region map of the Boussinesq approximation of 
the 1 atm condition. 
 

Two inequalities are derived as neglecting the pressure 
work and dissipation term. Other two conditions are 
derived in comparisons with the order of magnitude of 
coefficients.  
  Fig. 2 and Fig. 3 are result of the inequalities. In 1 atm 
condition, Boussinesq equations are valid in the region 
to a maximum Rayleigh number of 1019. The pressure 
condition is similar with the severe accident analysis.  
Rayleigh number of the natural convection for the in-
vessel retention(IVR) is order of 1016 to 1017. Fig. 2 
shows that the Boussinesq approximation is valid to 
analyze the natural convection for IVR. In case of 
increasing the pressure upto the 15MPa, the maximum 
Rayleigh number is decreased to the order of 1018 in Fig. 
3. 
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 Fig.3. Valid region map of the Boussinesq approximation of 
the reactor operation condition. 

 
3. Conclusions 

 
Boussinesq approximation equations are derived 

using the small parameter expansion. Inequalities 
derived by the approximation determined the valid 
region of the approximation.  The valid regions 
explicitly are investigated on the two conditions, 
atmospheric pressure condition and normal operation 
condition. These results and methods will be expected 
to introduce the explicit limitation when it is applicable 
to the Boussinesq approximation to the natural 
convection problem. 
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