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1. Introduction 

 
For the past two decades, the nuclear industry has 

attempted to move towards condition-based 

maintenance philosophies using new technologies 

developed to ascertain the condition of plant equipment 

during operation. From the early 1980’s the application 

of artificial intelligence techniques to nuclear power 

plants were investigated for instrument condition 

monitoring [1]. The Multivariate State Estimation 

System (MSET) was developed in the late 1980s [2]. 

And the Plant Evaluation and Analysis by Neural 

Operators (PEANO) was developed [3]; it uses auto-

associative neural networks (AANN) and applies them 

to the monitoring of nuclear power plant sensors.  

In this paper, a method that utilizes the attractive 

merits of principal component analysis (PCA) for 

extracting predominant feature vectors and Auto-

Associative support vector regression (AASVR) for 

databased statistical learning is proposed for the on-line 

monitoring and signal validation with the use of real 

plant data. 
 

2. PC based AASVR 
 

An auto-associative model is a model whose outputs 

are trained to emulate its inputs over an appropriate 

dynamic range. An auto-associative model will estimate 

the correct input values using the correlations embedded 

in the model during its training. The estimated correct 

value from the auto-associative model can then be 

compared to the actual process parameter to determine 

if a sensor has drifted or has been degraded by another 

fault type. Fig. 1 shows the schematic diagram of the 

proposed PCA-AASVR (PCSVR) method for modeling 

measurements in Nuclear Power plant. 

 

 
Fig. 1. The schematic diagram of PC-AASVR    

 

In this paper, an SVM regression method is used for 

signal validation of the measurements in NPPs. The 

SVM regression is to map nonlinearly the original data 

into a higher dimensional feature space. Hence, given a 

set of data {(xi, yi)}
mmn

i RR ×∈=1  where xi is the input 

vector to support vector machines, yi is the actual output 

vector and n is the total number of data patterns. The 

multivariate regression function for each output signal is 

approximated by the following function, 
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mk ,,2,1 L=  and m is the number of sensor 

measurements. Also, the function )(xiφ  is called the 

feature. Equation (1) is a nonlinear regression model 

because the resulting hyper-surface is a nonlinear 

surface hanging over the m-dimensional input space. 

The parameters w and b are a support vector weight and 

a bias that are calculated by minimizing the following 

regularized risk function: 
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Finally, the regression function of (1) becomes 
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where xr and xs are called support vectors (SVs) 

The three most relevant design parameters for the 

AASVR model are the insensitivity zone, ε , the 

regularization parameter, C, the kernel function 

parameter, σ . In this paper those parameters were 

optimized by response surface methodology (RSM). In 

this study, they are assumed common in every model of 

SVR. The optimal point was searched on the response 

surface which minimizes mean squared error (MSE). 

The optimum point of the response surface is obtained 

as )8.6,0005.0,4.1(),,( =Cεσ . 

In this study. 7 PCs were selected that explains more 

than 99.98% of total variation.  
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3. Application Results 

  

The real plant startup data of the Kori Nuclear Power 

Plant Unit 3 were applied to the PCSVR. The data is 

derived from the following 11 types of measured 

signals: the reactor power (the ex-core neutron detector 

signal), the pressurizer water level, the SG steam flow 

rate, the SG narrow range level, the SG pressure, the SG 

wide-range level, the SG main feedwater flow rate, the 

turbine power, the charging flow rate, residual heat 

removal flow rate and the reactor head coolant 

temperature. The data was divided into 5 subsets of 

equal size, named KR1 through KR5. Each subset is 

composed of 458 patterns which sampled every 5 

minutes. KR3 is used for training and the rest 4 subsets 

are for test. Fig.1 shows normalized 11 input signals. 

 
Fig. 1. Normalized input signals 

 

Fig. 2 represents the RMS error and relative RMS 

errors compared with the ranges of sensors. They are 

[120, 100, 2.2, 100, 100, 100, 2.2, 1500, 45.4, 1140, 

450]. The RMS error for the turbine power is higher 

than those of other signals. This is caused by the big 

standard deviation of the signal. 
 

 
Fig. 2. RMS error 

 

Fig. 3. represents hitogram of training and test data of 

the SG main feedwater flow rate. The standard 

deviations of the estimated error for training and test 

data are 0.3492% and 0.4711%, respectively. 

In order to investigate the system’s drift detection 

ability, we artificially degraded the SG main feed water 

flow rate signal (unit : Mkg/hr) in test subset KR1. The 

amount of drift is linearly increasing with time and its 

total amount of drift at the end point is assumed 5%. 

 

 
Fig. 3. Histogram of train and test data 

 

 
Fig. 4. Drifted signal and residual of estimate 

 

Drifted, its original and estimated signals are depicted 

on left Y-axis while estimation error is on right Y-axis 

in Fig. 4. The predicted feedwater flow rate is almost 

the same as the actual feedwater flow rate even though 

the measured feedwater flow rate had degraded. Also, 

the estimation error is increasing as the drift   progresses 

so that we could detect the sensor drift. 

 

4. Conclusion 
 

 We developed PC based AASVR for signal 

validation and applied Kori Nuclear Power Plant unit 3 

startup data to the developed algorithm. It shows very 

accurate estimate for each signal and even for the 

drifted signal. This proposed algorithm can be used for 

the calibration monitoring system in nuclear power 

plants. For further study grouping or clustering 

technique could be adopted. 
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