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1. Introduction 
Since we evaluate thermal nuclear reactor power with 

secondary system calorimetric calculations based on 
feedwater flow rate measurements, we need to measure 
the feedwater flow rate accurately. The Venturi flow 
meters that are being used to measure the feedwater 
flow rate in most pressurized water reactors (PWRs) 
measure the flow rate by developing a differential 
pressure across a physical flow restriction. The 
differential pressure is then multiplied by a calibration 
factor that depends on various flow conditions in order 
to calculate the feedwater flow rate. The calibration 
factor is determined by the feedwater temperature and 
pressure. However, Venturi meters cause a buildup of 
corrosion products near the orifice of the meter. This 
fouling increases the measured pressure drop across the 
meter, thereby causing an overestimation of the 
feedwater flow rate. 

 
2. A Smart Soft Sensing Model for the Feedwater 

Flow Rate 
In this paper, we develop a smart soft-sensing model 

based on support vector regression for on-line 
prediction of the feedwater flow rate of PWRs. 

 
2.1 Support Vector Regression (SVR) 
The basic concept of the SVR is to nonlinearly map 

the original data x  into a higher dimensional feature 
space. The SVR considers a regression function of the 
following form: 
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The function )(xiφ  is called the feature. Equation (1) 
is a nonlinear regression model because the resulting 
hyper-surface is a nonlinear surface hanging over the 

-dimensional input space. The parameters  and b  
are a support vector weight and a bias that are 
calculated by minimizing the following regularized 
risk function: 
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( , )iy f ε− x w  is called the ε -insensitive loss 

function [4]. The loss equals zero if the estimated 
value  is within an error level ( , )f x w ε , and for all 
other estimated points outside the error level ε , the 
loss is equal to the magnitude of the difference 
between the estimated value and the error level ε  (see 
Fig. 1). That is, minimizing the regularized risk 

function is equivalent to minimizing the following 
constrained risk function: 
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subject to the constraints  
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Fig.1. The parameters for the support vector regression. 

 
The constrained optimization problem of Eq. (3) can 

be solved by applying the Lagrange multiplier 
technique to Eqs. (3) and (4) and then by using a 
standard quadratic programming technique. Finally, the 
regression function of Eq. (1) becomes 
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where  is called the kernel 

function. A number of coefficients  are nonzero 
values and the corresponding training data points have 
approximation error equal to or larger than 
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ε . They are 
called support vectors. 

 
2.2 Uncertainty Analysis 

Through an uncertainty analysis, a prediction interval 
can be calculated such that the exact value exists in the 
prediction interval at a specified confidence level. 

Data-based models have several possible sources of 
uncertainty in predicted values; selection of training 
data, model structure including complexity, and noise in 
the input and output variables [1]. Since a data-based 
model is developed using a given training data set, each 
possible training data set selected from the entire 
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population of data will generate a different model and 
there will be a distribution of predictions for a given 
observation. Also, model misspecification takes place 
when a model structure is not correct, thereby 
introducing a bias. In this paper, we use statistical and 
analytical uncertainty analysis methods. 

The proposed soft sensing and monitoring algorithm 
was applied to the acquired real plant startup data of 
YGN3. In the simulation of the test data, the RMS error 
is 0.2085% for the SVR model. The monitoring 
algorithm using the SPRT informs the health status of 
an existing hardware sensor early. Also, estimates with 
a 95% confidence interval were obtained for 201 test 
data points by performing the analytic and statistical 
uncertainty analyses. The prediction intervals are so 
small that the developed soft sensing and monitoring 
algorithm can be applied successfully to validate and 
monitor the existing feedwater flow meters. 

The estimate with a 95% confidence interval of a 
statistical method is  

( ) 2
0 0ˆ2ˆ ˆVar y biasy y0 δ± + = ±               (6) 

The estimate with a 95% confidence interval of an 
analytic method is 
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2.3 Sensor Diagnostics 

The sequential probability ratio test (SPRT) uses the 
residual signal  to diagnose sensors. The 
residual signal is randomly distributed, so it is nearly 
uncorrelated and has a Gaussian distribution.  
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The sensor degradation or fault induces the change of 
the probability distribution function of the residual 
signal. SPRT detects sensor degradation by sensing the 
changes of the probability distribution function. 
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By taking the logarithm of Eq. (8) and substituting 
the probability density functions by residuals, means 
and variances, the log likelihood ratio can be updated 
recurrently as follows: 
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(9) 
The log likelihood ratio would decrease gradually for a 
normal sensor and eventually reach a specified bound 
while the ratio would increase gradually for a degraded 
sensor and eventually reach a specified bound. 
 

3. Application to Feedwater Flow Measurement  
The proposed smart soft sensing model was verified 

by applying it to the real plant startup data of 
Yonggwang Nuclear Power Plant Unit 3 (YGN3). 
Sixteen measured signals were acquired from the 
primary and secondary systems of the nuclear power 
plant, focused on the steam generator (SG). The 
acquired SG feedwater flowrate is the target output 
signal of the data-based model and all other signals are 
potential available inputs for the SVR model.  

Table 1 summarizes the performance results of the 
soft sensing method for feedwater flowrate by the data-
based model. Fig. 2 shows the estimation errors and 
prediction intervals by the SVR model. Fig. 3 shows 
simulation results in case the feedwater flowrate starts 
to be artificially degraded after 20 hr from the 
beginning. 

 
4. Conclusions 

 

Table 1. Performance of the SVR model 

Data type RMS  
error (%)

Relative 
max. 

error(%) 

Number of 
data points

Training data 0.2105 1.4278 1000 
Verification 

data 0.1896 1.4278 1800 

Test data 0.2085 1.2497 201 
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Fig. 2. Prediction intervals of the SVR model 
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Fig. 3. Monitoring of the feedwater flow rate in cases of 

artificial degradation 
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