
Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 24-25, 2013

A Profile-based Method to Select Test Cases for Safety-critical Software

Hee Eun Kima, Han Seong Sonb, Hyun Gook Kanga,*

a Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology,
373-1 Guseong-dong,Yuseong-gu, Daejeon 305-701, South Korea

b Department of Game Engineering, Joongbu University,
201 Daehak-ro, Chubu-myeon, Geumsan-gun, Chungnam 312-702, South Korea,

*Corresponding author: hyungook@kaist.ac.kr

1. Introduction

Nowadays most of instrumentation and control (I&C)
systems in the nuclear power plant (NPP) are
digitalized and KNIC RPS is one of the fully-digitalized
reactor protection systems. The software in the digital
system enables the system to perform several safety
functions. Thus the software in the KNICS RPS is
crucial to the safety of a nuclear power plant in that its
malfunction may result in irreversible consequences [1].

There were several studies to analysis the reliability
of the RPS software, for example, software fault tree
analysis [1] and input-profile-based software failure
probability quantification [2]. The latter estimates the
failure probability based on the result of testing.
However, those approaches may not reflect the past
input of the software properly. This paper proposes the
method to selecting test cases for the RPS software
based on the profile of the state and input.

2. Reflection of internal state

Software inputs affect the program in some way, so

the testing needs to reflect this effect. This section
describes the way to reflect the past input sequence as
the state variables.

2.1 Internal state

Past input sequences sets a system to have specific

state and outputs. The state is stored in the memory of
the system. The number of the states is finite, so the
system can be considered as finite state machine (FSM).
In this study, the variables that need to be loaded from
the memory are called state variables. The state
variables are the representation of past input sequences,
so they need to be reflected to choosing test cases.

2.2 Test set including state variables

Test set includes inputs and state variables which
represent past input sequence. Therefore, the test input
does not have to include lengthy past input sequence.
That is, to examine specific scenario, tester needs the
information of the scenario and corresponding input
sequence, but it is equivalent to test one test set and the
test process can be simplified.

In addition, if several different past input sequences
lead the same state, testing of each input sequence is
treated as the same process. That is, the number of
testing can be reduced.

3. Selecting test cases

In this section, the method to select the range of each
variable in the test set is described. It will reduce the
required number of test cases.

3.1 Determining the profile of Variables

The test set has several variables, constructing multi-

dimensional space. Each variable has its own possible
range, so the number of the required test set for
exhaustive test will increase by 2k as the number of k-
bit variables increases (Fig. 1).

Fig. 1. Conceptual diagram of multi-dimensional input space.

However, those variables are related to each other, so

the input space can be reduced. The range of each
variable can be obtained by reflecting plant dynamics
and the relationships of each state variable.

3.2 Determining the profile of Input

The state of the system is determined by the plant

dynamics. The state variables can be said to be paired,
representing a possible state of a system. Next state of
an FSM is determined according to the present state and
input. That is, input variables determine the next value
of several state variables. However, paired state
variables related to the process value might limit the
range of the input by the plant dynamics. That is, if the
state is determined, we can obtain possible range of the
input (Fig.2.).

If we can identify the state i and pi which is the
frequency of state i, we can obtain the range of input
and qi,j, which is the conditional probability of each
input values. Then the success of one test set will reveal

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 24-25, 2013

pi×qi,j of fault free portion. According to the previous
study [2] the values of qi,j is identical to each other, then
qi, j = 1/pi, because the sum of qi,j is one.

Fig. 2. Relationship of state and the range of input.

3.3 Determining the profile of state

The state of a system is represented as paired state

variables, as stated. However, there are state variables
related to the process value and the ones which are not
related to the process value. In case of RPS software,
only one pair is related to the process value.

Fig. 3. State variables related to the process value (indicated
as dotted line) and the ones which are not related to the
process value.

The values of two kinds of variables independently

change to each other. Therefore, the value of pi can be
calculated as pi = rs1,m×rs2,n×…, where rs1,m is the
frequency of state variable which is not related to the
process value, and rs2,n is the frequency of set of state
variables which are related to the process value.

4. Summary and conclusion

Software failure probability quantification is
important factor in digital system safety assessment. In
this study, the profile of paired state variables and input
was obtained by reflecting plant dynamics and
characteristics of digital system. The software failure
probability can be estimated according to the profile of
test set. Furthermore, the process of testing could be
simplified and the number of test set is small enough to
perform exhaustive test.

REFERENCES

[1] G.Y. Park, et al., Fault Tree Analysis of KNICS RPS
Software, Nuclear Engineering and Technology, Vol. 40, No.
5, pp. 397-408, 2008.
[2] H.G Kang, et al., Input-profile-based Software Failure
Probability Quantification for Safety Signal Generation
Systems, Reliability Engineering and System Safety, Vol. 94,
pp1542-1546

