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1. Introduction 
 

Recently, Carney et al. [1] implemented fission matrix 

capability in the MCNP code and contemplated to use it 

for acceleration of Monte Carlo (MC) calculation. It 

turned out that the concept of fission matrix was 

introduced quite early in reactor physics [2] and already 

used to accelerate MC convergence by Carter and 

McCormick [3] and by Kitada and Takeda [4]. 

On the other hand, following the high-order/low-order 

paradigm structure for acceleration in deterministic 

transport calculation, Yun and Cho [5] proposed a 

continuous-energy MC acceleration method using 

fission source distribution (FSD) obtained by partial 

current-based coarse-mesh finite difference (p-CMFD) 

deterministic method [6]. In a similar work, coarse-mesh 

finite difference (CMFD) acceleration of multi-group 

MC calculation was proposed by Lee et al. [7].  

In this exploratory paper, any relationship between 

fission matrix and p-CMFD matrices is investigated by 

applying them to a 1-D continuous-energy thermal 

reactor test problem. The fundamental and higher-mode 

eigenpairs are calculated and compared. 
 

2. Relation Between Fission Matrix  

and p-CMFD Matrix 
 

2.1 Fission Matrix Method 
 

By integrating the neutron transport equation over 

energy and angle, and segmenting the problem domain 

into coarse-mesh cells [1], the fission matrix equation is 

obtained as   
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where Ĥ  is fission matrix and Ŝ  is FSD vector. In this 

derivation, fission matrix ( ˆ
IJH ) means the number of 

fission neutrons produced in cell I due to fission neutrons 

born in cell J normalized by the number of fission 

neutrons born in cell J. The fission matrix can be directly 

tallied during the MC calculation. Using the QR 

algorithm in MATLAB, one can then obtain fundamental 

and higher-mode eigenpairs for the fission matrix. 
 

2.2 Relation between Fission Matrix Method and  

p-CMFD Method 
 

Following the p-CMFD methodology, the one-group 

p-CMFD equation can be expressed in matrix form as: 
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 ,T F
k

    (2) 

where T and F are neutron transport and fission matrices, 

respectively, and    is coarse-mesh cell-averaged flux 

distribution vector. From these p-CMFD matrices, a 

corresponding form of Eq. (1) is obtained by using the 

following operations: 

 1H FT  , (3a) 

and 

 S F  . (3b) 

Thus, a “fission matrix” can be expressed in terms of 

p-CMFD matrices using Eq. (3a). Then fundamental and 

higher-mode eigenpairs can be calculated from this 

“fission matrix” in the same way. However, Eq. (3a) 

requires explicit inverse of T, which is not trivial. To 

avoid this problem, the QZ algorithm in MATLAB can 

be applied directly to Eq. (2) to obtain fundamental and 

higher-mode eigenpairs. 
 

3. Numerical Results 
 

A 1-D thermal reactor test problem shown in Fig. 1 is 

solved by the continuous-energy MC code McSLAB [8], 

which has implemented the fission matrix tally 

procedure. Calculation conditions are shown in Table I. 

During the 10 active cycles, fission matrix is directly 

evaluated. In the meantime, one-group p-CMFD 

parameters are also tallied to construct p-CMFD matrices. 
 

 
Fig. 1. 1-D thermal reactor test problem 

 

Figs. 2 and 3 show fission matrices obtained by direct 

sampling of Ĥ  and by Eq. (3a) with inversion of T in p-

CMFD matrices, respectively. Since the last two cells in 

the reflector of the test problem does not contain fissile 

material, the rank of “fission matrix” H decreases from 

12 to 10, and the number of non-zero eigenvalues is 10. 

In Fig. 3, it is observed that column 11 and 12 in the 

“fission matrix” obtained from p-CMFD matrices are 

non-zeros, while they are zeros in directly sampled 

fission matrix. And the bandwidth of the “fission matrix” 

obtained from the p-CMFD matrices is wider. 
 

Table I. MC calculation conditions 
Histories per Cycle 50,000 

Inactive/Active Cycles 90/10 

Cell Size 
10.08 cm 

(Half-Assembly) 
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Fig. 2. Fission matrix obtained from direct sampling 

 

 
Fig. 3. Fission matrix obtained from p-CMFD matrices 

 

Fig. 4 compares the eigenvalue spectra obtained from 

directly sampled fission matrix and from p-CMFD 

matrices, while Figs. 5 and 6 compare fundamental and 

first-mode FSDs. 
 

 
Fig. 4. Eigenvalue spectra obtained from directly sampled 

fission matrix and p-CMFD matrices 

 

 
Fig. 5. Comparison of fundamental-mode fission source 

distributions 

 

 
Fig. 6. Comparison of first-mode fission source distributions 

 

4. Summary and Conclusions 

 

The structure, fundamental and higher-mode 

eigenpairs of the fission matrix obtained from the fission 

matrix method and the p-CMFD method, respectively, 

are compared using the numerical results on a test 

problem reactor with reflector region.  

The fission matrix method gives eigenmodes in fission 

source distributions, but not in flux distributions. Thus, 

flux distribution in the non-fissile region of the reactor is 

not available. However, the p-CMFD method gives 

eigenmodes in both variables. 

The numerical results indicate that the fundamental-

mode eigenpairs from the two methods are practically 

identical, but the higher-mode eigenpairs exhibit some 

differences. The dominance ratio in the p-CMFD method 

is smaller than that in the fission matrix method, if the 

coarse-mesh is not too fine. This implies that the p-

CMFD method converges faster than the fission matrix 

method if it is used as low-order equation in acceleration 

of Monte Carlo calculation. It is also noted that the 

storage required is linear in N (=number of cells) in the 

p-CMFD method, while it is quadratic in the fission 

matrix method. 
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