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In a previous study, the stochastic space-dependent kinetics model (SSKM) based on the forward stochastic model in
stochastic kinetics theory and the It stochastic differential equations was proposed for treating monoenergetic space-time
nuclear reactor kinetics in one dimension. The SSKM was tested against analog Monte Carlo calculations, however, for
exemplary cases of homogeneous slab reactors with only one delayed-neutron precursor group. In this paper, the SSKM is
improved and evaluated with more realistic and complicated cases regarding several delayed-neutron precursor groups and
heterogeneous slab reactors in which the extraneous source or reactivity can be introduced locally. Furthermore, the source
level and the initial conditions will also be adjusted to investigate the trends in the variances of the neutron population and
fission product levels across the reactor. The results indicate that the improved SSKM is in good agreement with the Monte

Carlo method and show how the variances in population dynamics can be controlled.

KEYWORDS : Space-time Dependent, Stochastic Kinetics, Forward Stochastic Model, 1t6 Stochastic Differential Equation, Heterogeneous Reactor,

Dynamic Fluctuation

1. INTRODUCTION

To thoroughly understand the kinetic behavior of a
reactor, it is necessary to interpret the equations for the
response of prompt and delayed neutron populations to
changes in reactivity [1,2,3]. This problem is mathematically
complex because the neutron population in a reactor is
actually a function of both space (i.e., position in the core)
and time [4,5,6]. In addition to treating deterministic
behaviors, random fluctuations in population dynamics
should also be appropriately assessed for various practical
situations such as low reactor power levels [7,8,9].

In a previous study [10], a simplified stochastic model
(called the stochastic space-dependent kinetics model or
SSKM) based on the forward stochastic model (FSM) in
stochastic kinetics theory [4,5] and the Itd stochastic
differential equations [11,12,13] was proposed for the
analysis of monoenergetic space-time nuclear reactor
kinetics in one dimension. First, the FSM equations to
determine the mean values of neutron and delayed-neutron
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precursor populations were considered as deterministic
without taking into account their variances and co-variances.
Second, the system of interest was randomized again in
the light of the It6 stochastic differential equations in order
to derive the SSKM, thereby enabling the computation of
the expected values of neutron and cumulative fission
densities as well as their standard deviations. Thus, the
SSKM may be usefully applied in the treatment of multi-
region reactors compared with other methods due to its
simplicity and feasibility in modeling the random space-
time behavior of the population dynamics. Nevertheless,
the SSKM was tested against analog Monte Carlo
calculations for exemplary cases of uniform slab reactors
with just one delayed-neutron precursor group. Therefore,
further work is still needed to enhance the model and to
evaluate its applicability in nuclear reactor transient
analysis.

In the present study, the SSKM is improved and
evaluated with more realistic and complicated cases
including M delayed-neutron precursor groups and
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heterogeneous slab reactors where the extraneous source
or reactivity can be introduced locally. Additionally, the
source level and the initial conditions are adjusted to
recognize the trends in the variances, i.e., the random
fluctuations of the neutron population and fission product
levels across the reactor. The numerical results demonstrate
that the improved SSKM is in good agreement with the
Monte Carlo method and show how the variances in
population dynamics can be controlled.

2. IMPROVEMENT OF THE SSKM TO TREAT M
DELAYED-NEUTRON PRECURSOR GROUPS

2.1 Overview of the SSKM for One Precursor Group

In the forward stochastic model (FSM) of the stochastic
kinetics theory, the spatial domain of a reactor is partitioned
into / space cells, and the energy range is partitioned into
G energy cells [4,5]. Subject to this partitioning, the state
of the reactor is defined by the set of numbers

N={ngcm},i=1,2,..,5,g=1,2,..,Gm=1,2,.., M,

where #;, is the number of neutrons in space cell i and
energy cell g, and ¢, is the number of m-type delayed
neutron precursors in space cell i.

Starting with the concept of reactor transition
probability and its probability generating function, the
FSM equations for mean value of neutron and precursor
distribution are formed as follows:
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where
Si(?) is the neutron source rate in space cell 7 and energy
cell g,
Acig(?) 1s the capture frequency per neutron in space cell
i and energy cell g,
Asig(?) 1s the scattering frequency per neutron in space
cell i and energy cell g,
Ayie(?) is the fission frequency per neutron in space cell i
and energy cell g (Ag = v*3 7 where v¥ is the neutron
speed, and Z‘? is the macroscopic fission cross section),
K*'is the probability that a scattering event which occurred
in energy cell g transfers a neutron to energy cell g,
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X5 is the probability that a prompt neutron produced by
fission has energy within energy cell g,

Xs is the probability that a delayed neutron produced by
m-type precursor decay has energy within energy cell g,
A 1s the decay constant for precursor type m,

"» is the average ratio of the number of m-type precursors
to the number of prompt neutrons produced in a fission
(B'=Z0 '),

li (t) represents the frequency per neutron at which
neutrons in space cell i and energy cell g will diffuse into
space cell i’ (without a change in energy),vi= (1 — B)v*,
where v* is the average number of neutrons (prompt and
delayed) per fission induced by a neutron in energy g,
and = /(1 — ), where B is the total delayed neutron
fraction.

As shown in the previous study, the stochastic space-
dependent kinetics model (SSKM) based on the FSM
equations (1) and (2) and the It6 stochastic differential
equations was proposed for one spatial dimension, one
energy cell, and one precursor as follows:

d V(Z)} A[ﬁm} {q,-m}
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and
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0

:| is the two-dimensional Wiener process [10].
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Eq. (3) is the stochastic space-dependent kinetics
model (SSKM) for one spatial dimension, one energy
cell, and one delayed-neutron precursor group. To deal
with M precursor groups, the SSKM will be improved, as
presented in the following section.

2.2 Improvement of the SSKM to Treat M Precursor
Groups
For one spatial dimension and one energy cell (G = 1),
the FSM equations (1) and (2) for the mean values of
neutron and precursor populations become

? =—A, (O 0+, =D A (A1) + f: AT ()
+ [L.(O7.() — L. (O, ()]+ S,(2), @

oc, (t _ o B
cz#() =~ ACin()+ BV, A (O, (2), ©)

where an assumption was made that neutrons can only
diffuse between successive cells.

In accordance with the previous study [10], it is crucial
to consider the changes in the neutron and delayed-neutron
precursor populations in a very small time interval, Az,
where the probability of more than one event occurring
during time At is negligible. During time At, there are M+6
different possibilities for an event to occur. Let [A7i(f),
ACu(2), AC(?),..., Aca ()]" be the change in the populations
7(f) and Ci(f) (m = 1, 2, ..., M) in time At. Also, it is
assumed that the changes are approximately normally
distributed. The M+6 possibilities for [A7i(f), Aca(?),
ACH(D),..., Acu (1)]"

are
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Subsequently, the probabilities of these events are
B =dn,(1)At = A, ()n,(1)At,
P, =bn,(1)At = A, (0)n, (1)At,
B = 4¢c, (DA,
P, = A,¢, (DAL, ...,
Bya = 4G (DAL,
Py =1_;(On_ (DAL,
Brva =1, OO0, (DAL,
Pis =L@+, (OIn ()AL,
P,..=S.(0)At,

where it is assumed that the extraneous source produces
neutrons randomly following a Poisson process with
intensity S«f).

The similar approach adopted from the previous
study [10] gives the following It stochastic differential
equation:

(a0 [#70] [¢.0]
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and
W)
7 W, (1)
W= where W(t), Wa(1),... and
Wi (0) W 1(t) are Wiener processes.

Eq. (6) is the stochastic space-dependent kinetics
model (called the SSKM) for one spatial dimension, one
energy cell, and M delayed-neutron precursor groups.
Recall that if B = 0, then Eq. (6) reduces to the FSM Egs.
(4) and (5), which, in turn, can reduce to the conventional
point-kinetics equations as mentioned in the previous
study. Hence, it is noted that the improved SSKM can
also be considered as a space-dependent generalization of
the stochastic point-kinetics equations [10,12].
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3. NUMERICAL STUDIES

Several typical numerical studies are performed using
MATLAB and FORTRAN to validate the SSKM for M
precursor groups as well as to evaluate its applicability to
more sophisticated reactor kinetics problems through
comparison with analog Monte Carlo calculations. The
numerical solution for Eq. (6) is similarly adopted from
the previous study [10]. In the Monte Carlo procedure, the
system is checked at each time step, to see if fission, decay,
capture, or diffusion occurs or if a source neutron is
produced. After all the trials have been generated, the mean
and variance of the dynamic populations in the reactor
are computed for comparison with the SSKM results.

The first example deals with six delayed-neutron
precursor groups in which positive step reactivity is inserted
into a homogeneous slab reactor. The second example
analyzes the case of a heterogeneous slab reactor with
uneven insertion of negative step reactivity. Finally, the
variances in population dynamics are examined by adjusting
the external source rate and initial conditions to determine
how to keep the dynamic system under control from
inherent random processes. This is very important in the
safety analysis of reactor transients.

3.1 Calculations for Six Delayed-neutron Precursor
Groups

The first example models positive step reactivity
insertion within a homogeneous slab reactor which is
partitioned into five space cells (/ = 5). In this case, the
values A, =[0.0127,0.0317,0.115, 0.311, 1.4, 3.87], . =
[0.000266, 0.001491, 0.001316, 0.002849, 0.000896,
0.000182], B=0.007, v=2.5, the fission rate v3; =20000/sec,
the absorption rate v, = 49850/sec, the slab thickness H
= 150 cm, the diffusion coefficient D; = 0.046 c¢cm, and
UD,-B;. = 100/sec (B; = (il /H) is the geometric buckling
for space cell i, where i = 1, 2, ..., I; [14]) are considered
(it is noted that li(?) = L(#) = 2= for the uniform slab
reactor of interest, where i’ = i-1, i+1). The uniform external
source rate S; = 6666.7/sec and the homogeneous initial
conditions [77:0), ¢:(0),..., €is(0)] =[33.3,34908.1,78391. 2,
19072.5,15268.0,1066.7,78.4] are adopted for each inner
space cell (i =2, 3, 4), while the vacuum boundary conditions
are applied to the two outermost space cells (i = 1, 5).
Forty 0.1-second time intervals are used for the SSKM
calculations. The number of trials for both the SSKM and
Monte Carlo calculations is 5000, and it is found that the
SSKM is more than one hundred times faster than the Monte
Carlo method in this example.

As seen in Table 1, there is good agreement between
the two different calculation procedures at time ¢ = 0.1
seconds. The mean values of neutron and precursor
populations (E(7;) and E(ZZZIE,-M); i=1,2,...,5and m =
1,2, ..., 6)are listed with their standard deviations (o (%)
and 0(22:@,,,); i=1,2,..,5andm=1,2,...,6). Figs. 1
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Table 1. A comparison of Mean Neutron Level and Mean Fission Product Level with Their Standard Deviations Calculated
at Time ¢t = 0.1 Seconds using the SSKM and Monte Carlo Methods for Positive Step Reactivity Insertion within a

Uniform Slab Reactor.

Space cell number Estimated values Monte Carlo SSKM Relative difference (%)
E@7,(0.1)) 0 0 -

| o(71,(0.1)) - _ .
E(Z,.€,(0.1)) 0 0 -
o=, en(0.1)) - - -

E(7,(0.1)) 83.26 84.81 1.86%

5 o(72(0.1)) 101.30 78.70 -
E(Z En(0.1)) 150400 150450 0.03%
(2 @.(0.1)) 728.40 947.14 -

E(715(0.1)) 93.82 93.84 0.02%

3 o(713(0.1)) 108.00 83.31 -
E(SS.E,(0.1)) 150700 150880 0.12%
o, e(0.1)) 761.40 1042.70 -

E(74(0.1)) 81.96 82.52 0.68%

4 o(7n14(0.1)) 101.30 75.76 -
E(SS €(0.1)) 150300 150450 0.08%
o(Z,1Cn(0.1)) 720.80 943.20 -

E(m5(0.1)) 0 0 _

S o(7s(0.1)) - - .
E(Z_,C5(0.1)) 0 0 -
oz, sn(0.1)) - - -

ol Sum(E@/0.1))) 259.04 261.17 0.82%
Sum(E(Z;_€x(0.1))) 451400 451780 0.08%

*Relative Difference (%) = 100*(SSKM - Monte Carlo)/Monte Carlo

and 2 show the mean neutron and precursor populations
for 5000 trials (7.e., 5000 sample paths or trajectories of the
Wiener processes) as well as the neutron and precursor
sample paths modeled by the SSKM.

3.2 Calculations for Inhomogeneous Slab Reactor

The second example simulates uneven insertion of
negative step reactivity within a heterogeneous slab reactor
which is divided into five space cells (/ = 5). The spatial
dependent model is given in Table 2 (note that /;:(¢) # L«(?)
for the inhomogeneous slab reactor of interest, where i’ =
i-1, i+1) with the vacuum boundary conditions applied to
the two outermost space cell (i = 1, 5). Forty 0.01-second
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time intervals are also used for SSKM calculations. The
number of trials for both SSKM and Monte Carlo
calculations is 5000. Table 3 denotes that the SSKM agrees
well with the Monte Carlo method at time ¢ = 0.01 seconds.

3.3 Investigation of the Variances in Population

Dynamics

It is noted that the Wiener process which governs the
1t6 stochastic differential equations varies without bound
as time increases, whereas its mean always remain zero
[13]. That is, the variances in population dynamics
resulting from Eq. (6) may not be anticipated. For safety
purposes, it is necessary to observe the variances of the
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450
—4— Neutron mean in space cell #2
400~ - Sample neutron in space cell #2
—e— Neutron mean in space cell #3
350 —— Sample neutron in space cell #3
—s— Neutron mean in space cell #4
3004 ... Sample neutron in space cell #4
250

Neutron Population

Time, sec

Fig. 1. Mean Neutron Level and One Neutron Sample Path for
a Uniform Slab Reactor which is Partitioned into a Set of
Space Cells.

151500

—4— Precursor mean in space cell #2
- Sample precursor in space cell #2
151000 4 —e— Precursor mean in space cell #3
—— Sample precursor in space cell #3
—s— Precursor mean in space cell #4
Sample precursor in space cell #4

150500

150000

149500

Sum of Precursors Population

149000

148500 T T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

Time, sec
Fig. 2. Mean Precursor Level and One Precursor Sample Path
for a Uniform Slab Reactor which is Partitioned into a Set of
Space Cells.

Table 2. Spatial Dependent Model for a Heterogeneous Slab Reactor (8 =0.0075, A = 0.075, v, = 2.41, v = 220000 cm/sec).

Kinetic parameters Region 2

Region 3 Region 4

Fission rate

v, = 1920/sec

v = 770/sec

vy = 1920/sec

Absorption rate v, = 4670/sec v; = 1870/sec v = 4670/sec

Slab thickness H,=100 cm H; =100 cm H,=100 cm
Diffusion coefficient D,=0.15cm D;=0.09 cm D;=0.15cm

External source 8> =500/sec S5 =300/sec Ss=500/sec

Initial conditions

[72(0), €2(0)] = [140,120]

[723(0), €x1(0)] = [140,120]

[74(0), €u(0)] = [140,120]

neutron and precursor populations within the reactor by
means of the external source rate and initial conditions
for which the nature of the stochastic processes modeled
by the SSKM can be clarified. In this fashion, the problem
given in the Section 3.1 will be utilized here for illustration.

First, the source level is alternately increased by a factor
of 10, 50, 100, and 500 (called the source multiplication
factor or Rgs), while the initial conditions are kept unchanged.
Figs. 3 and 4 represent the ratios of the standard deviations
to the mean values of neutron and precursor populations, i.e.,
the relative standard deviations in neutron and precursor
distribution at £ = 0.1 seconds (Rspv and Rspc) as a function
of the source multiplication factor (Rgs). As shown in
Fig. 3, the value of Rspy decreases as the source rate is
increased. On the other hand, the Rspc behaves in an inverse
manner in this region of Rgs. The reason seems to be that
the increase in the source rate is not strong enough to
depress the random fluctuations in the precursor population.
Thus, the Rgs still increases to the value of 20000 as seen
in Fig. 4. This implies that the value of Rspc tends to
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decrease with sufficient increase of the source rate.
Accordingly, it can be seen that the population dynamics
are generally more stochastic at low source levels and tend
to become less stochastic as the source rate is increased.

Secondly, the source level is maintained while the
initial conditions are increased by a factor of 2, 3, ..., 10
(called the initial condition multiplication factor or Ric).
Figs. 5 and 6 show the relative standard deviations in neutron
and precursor distribution at = 0.1 seconds (Rspy and Rspc)
as a function of the initial condition multiplication factor
(Ric). These figures show that both Rspy and Rspc decrease
as the initial conditions are increased. In other words, the
system of interest is found to behave more stochastically
when it evolves from low initial conditions.

As a result, the random fluctuations in population
dynamics can be made controllable by considering
appropriate extraneous source level or initial conditions.
In this case, the relative standard deviations in neutron
and precursor distribution have a tendency to decrease
with increasing source rate or initial conditions.
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Relative standard deviation

—8— Rgpy for space cell #2
= 0= Rgpy, for space cell #3
- =40 - Rgpy for space cell #4

T T T T
0 100 200 300 400 500

Source multiplication factor (Rgg)

Fig. 3. The Relative Standard Deviation in Neutron Population

at t= 0.1 Seconds (Rspy) as a Function of the Source

Multiplication Factor (Rps).

-2

2:5x10 ] —m—Rgp for space cell #2

2x10% = 0= Rgp for space cell #3
a i - -4 - Rgp for space cell #4
S 1.5x107
3
>
O
©
kel -2
= 107 A
©
c
8
2]
[
=
kS
2 5x10° A
S ¥y
T T T 3 T 7 T
5000 10000 15000 20000

Source multiplication factor (Rgg)

Fig. 4. The Relative Standard deviation in Precursor
Population at 7 = 0.1 Seconds (Rspc) as a Function of the

Source Multiplication Factor (Rpgs).

Table 3. A comparison of Mean Neutron Level and Mean Fission Product Level with Their Standard Deviations Calculated
at Time t = 0.01 Seconds using the SSKM and Monte Carlo Methods for Uneven Insertion of Negative Step
Reactivity within a Heterogeneous Slab Reactor.

Space cell number Estimated values Monte Carlo SSKM Relative difference (%)*
E(m(0.1)) 0 0 B}

| o(7,(0.1)) - - }
E(1,(0.1)) 0 0 -
o(@n(0.1)) - } N
E(n2(0.1)) 78.99 78.60 -0.49%

5 o(7:(0.1)) 50.20 58.03 -
E(c2(0.1)) 156.81 156.73 -0.05%
o(cx(0.1)) 12.16 14.75 -
E(n5(0.1)) 130.63 130.56 -0.05%

X o(71:(0.1)) 49.64 52.06 -
E(c21(0.1)) 139.05 139.13 0.06%
0(@(0.1)) 4.55 491 -
E(714(0.1)) 78.62 78.39 -0.29%

A o(74(0.1)) 49.49 58.06 -
E((0.1)) 156.85 156.62 -0.15%
o(ca(0.1)) 11.96 14.58 -
E(n5(0.1)) 0 0 -

5 o(715(0.1)) - } ;
E(@5(0.1)) 0 0 -
0(@5(0.1)) - - -

Toal Sum(E(7(0.1))) 288.24 287.55 -0.24%
Sum(E(c:(0.1))) 452.71 452.48 -0.05%

*Relative Difference (%) = 100*(SSKM - Monte Carlo)/Monte Carlo
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p —m—Rgpy for space cell #2

9x10™ = 0= Rgpy for space cell #3
< 8x10" \ - -0+ - Rgpy, for space cell #4
2
S 7x10" A
()
©
E -1
© 6x10°
©
c
8
a2 -1
g 5x10™ 1
k]
[}
o

4x10" 4

T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 M

Initial condition multiplication factor (R,c)

Fig. 5. The Relative Standard Deviation in Neutron Population
at = 0.1 Seconds (Rspy) as a Function of the Initial Condition
Multiplication Factor (R;c).

4. CONCLUSIONS

In this work, the stochastic space-dependent kinetics
model (SSKM) was improved and tested with more realistic
and complicated cases regarding six delayed-neutron
precursor groups and inhomogeneous slab reactors where
the reactivity or extraneous source can be introduced
locally. The numerical studies showed that the improved
SSKM agrees well with the Monte Carlo method. Again,
the improved SSKM, which can be considered as a
generalization of the stochastic point-kinetics equations,
was found to provide a faster calculation method than
Monte Carlo computation. In addition, the source level
and the initial conditions were adjusted to investigate the
random fluctuations of the neutron population and fission
product levels across the reactor. Consequently, it was
shown that the relative standard deviations in neutron and
precursor populations tend to decrease with increasing
source rate or initial conditions. That is, the random
behavior of a nuclear reactor can be made controllable
during transients. Thus, it is expected that the SSKM can
be used for reactor transient analysis with possibility of
controlling the variances of dynamic populations.

In future work, the SSKM may be further extended to
handle few energy groups, and it will be applied to various
practical problems involving space-time dependent reactor
kinetics.
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8x10°

7x10° 4 & —m®— Rgp for space cell #2
\ -o- R for space cell #3

6x10° \ s p

. - - - Rgp for space cell #4
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Relative standard deviation

2x10° 4

Initial condition multiplication factor (R,¢)

Fig. 6. The Relative Standard Deviation in Precursor
Population at # = 0.1 Seconds (Rsnc) as a Function of the Initial
Condition Multiplication Factor (R;c).
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