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The in-cabinet response spectrum is used to define the input motion in the seismic qualification of instruments and
devices mounted inside an electrical cabinet. This paper presents a procedure for generating the in-cabinet response spectrum
for electrical equipment based on in-situ testing by an impact hammer. The proposed procedure includes an algorithm to
build the relationship between the impact forces and the measured acceleration responses of cabinet structures by estimating
the state-space model. This model is used to predict seismic responses to the equivalent earthquake forces. Three types of
structural model are analyzed for numerical verification of the proposed method. A comparison of predicted and simulated
response spectra shows good convergence, demonstrating the potential of the proposed method to predict the response
spectra for real cabinet structures using vibration tests. The presented procedure eliminates the uncertainty associated with

constructing an analytical model of the electrical cabinet, which has complex mass distribution and stiffness.
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1. INTRODUCTION

Active safety-related equipment is typically seismically
qualified before installation within nuclear power plants.
Seismic qualification (SQ) of equipment may be required
not only when the equipment is installed in the plant but
also when the state of the equipment is changed during
operation. The most common SQ methods employ
analysis, testing, a combination of testing and analysis,
and/or experience data [1]. However, the experience data
method is impractical in Korea due to a lack of such data
from earthquake experience, and qualification tests also
have certain drawbacks as they are typically performed
in testing laboratories located away from the plant.

In addition, some types of equipment cannot be
qualified by analysis or testing alone due to their size or
complexity. It may also be impractical to test large
equipment at full levels due to limitations in the vibration
test equipment according to the circumstances. Furthermore,
the commonly used shaking table test cannot be used on
equipment already installed in operating plants because
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such equipment cannot be moved from its original position
to mount on a test facility. In contrast to the above methods,
in-situ vibration tests like the impact test can provide an
efficient, effective way to determine the modal properties
of those cabinets instead of using a large shaking table
system. A combined method of testing and analysis can
be used as an aid to the SQ of large and complex systems
per IEEE-344 [1]. Equipment vibration tests are performed
not only for SQ but also for measuring modal properties
and for validating the analytical model.

The SQ of the device or the relay mounted on or
within the cabinet is performed by testing it to a level
equal to or greater than the established response at the
mounting location. The seismic input for the components
inside the cabinet is defined in terms of an in-cabinet
response spectrum (ICRS) which can be calculated from
the response at the mounting location of the cabinet. The
ICRS can be generated by seismic analyses or shaking
table tests of the entire cabinet. As mentioned above, a
full-scale shaking table test of the operating equipment is
impractical. It is possible to generate a realistic ICRS by
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seismic analysis after obtaining the accurate modal
parameters of the cabinet. In-situ vibration tests can be
performed on an electrical cabinet in the field to obtain its
modal properties from which the ICRS can be calculated.
This is a cost-effective alternative compared to de-energizing
the equipment, disconnecting the cables, and moving the
equipment to a laboratory for a shaking table test.

As part of industry efforts to generate the ICRS of
equipment in older operating nuclear power plants, EPRI
[2] developed generic seismic amplification factors for
electrical cabinets that are valid for any location in a cabinet.
These amplification factors are used to scale the floor
response spectra (FRS) at the base of the cabinet to the
amplified response spectra. However, the amplification
factors in the EPRI report [2] are typically very conservative
and tend to give unrealistic spectra. Gupta et al. [3] and
Gupta and Yang [4] presented analytical approaches to
evaluate the ICRS based on two-degree-of-freedom Ritz
vectors. Yang and Gupta [5] also developed a computer
program to generate an ICRS by using the formulations
of the Rayleigh-Ritz method. The modified Ritz vector
method for generating an ICRS was presented by Rustogi
and Gupta [6] to consider the uplift of the cabinet base by
horizontal rocking. These methods are based on analytical
approaches. Therefore, for these methods the analytical
models must be constructed first to represent the dynamic
characteristics of the equipment.

However, it is not easy to model electrical equipment
analytically. In order to avoid constructing the analytical
model, Koo et al. [7] developed an effective method to
predict the seismic response of a structure based on state-
space model identification. The study by Koo et al. [7]
focused on verification of the predicting method by the
shaking table test for a simple specimen. Further studies
are required to extend this study to predict the ICRS of
the cabinet and to present further verifications for more
complex models. This study developed a discrete-time
state-space equation (SSE) to predict the equivalent seismic
forces applied at the cabinet and a method to estimate the
seismic responses of the cabinet by numerical integration
of the equation of motion. This paper introduces the
procedure to predict the ICRS and describes the numerical
simulation tests for its verification.

2. CRS PREDICTION

2.1 Prediction Procedure

The seismic response of a structure can be estimated
after its dynamic characteristics are reasonably identified.
This study proposes a procedure to estimate the ICRS of
electrical equipment based on an in-situ vibration test using
an impact hammer. The proposed procedure eliminates
the uncertainty associated with constructing an analytical
model of an electrical cabinet that has a complex mass
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distribution and stiffness.

The ICRS prediction procedure used in this study is
summarized in Fig. 1. This procedure starts from generating
an artificial earthquake motion compatible with the target
response spectrum. The artificial earthquake motion may
be a time-history acceleration as shown in Fig. 2. The
procedure also includes identification of the state-space
equation by measuring the response and the impulse
from impact tests. The seismic responses under generated
artificial earthquakes are then predicted and converted to
ICRS.

2.2 Earthquake-equivalent Load

The earthquake-equivalent load at the mass point of
the cabinet as shown in Fig. 3 is expressed as:

F(1) = -M {1}ii, @

where (g denotes the base acceleration as the earthquake
input motion and {1} is the column vector filled with ones.
M is the mass matrix of the cabinet structure.

The equation of motion for a linear dynamic system
subjected to an earthquake-equivalent load can be
expressed as:

Mii + Cii + Ku = F(¢) )

where M, C, K are the mass, damping and stiffness matrices
of the cabinet structure, respectively, and u denotes the
displacement response vector to the effective load vector
of F(t).

From Eq. (2), the acceleration responses can be derived
as follows:

ii = é(-cu - Ku+F(1)) ©)

Generation of Artificial Earthquake Compatible
to Design Floor Response Spectrum (Fig. 2)

. 4

Idealization of the Equipment Cabinet to a
Lumped-mass System (Fig. 3)

)\ 4

Identification of the Equivalent Earthquake Load
by Impact Test at Each Node

¥

Seismic Response Prediction when Excited by
the Artificial Earthquake as a Floor Motion

A 4

Converting Predicted Seismic Response to ICRS
Fig. 1. ICRS Prediction Flowchart
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The relationship can be rewritten as follows [8]:

i = [-g ‘%HZ]*%}F(’) ®)

which is the form of the state space equation in continuous-
time. Equations (4) and (5) can be reproduced by assigning

e ] od]
M | B ] and

D:[ﬁ] to be the representative form of the state space

%

X(t):[ ‘lj] y(O)=0, u(t)=F(t), A=

equation as follows:
%(t) = Ax(f) + Bu(r)

y(t) = Cx(t) + Du(t) ©)

where x(t), y(t) and u(t) are the state values, output
acceleration response and input force at time t in this study.
To obtain the discrete-time state space equation, first
consider the linear time-invariant homogeneous equation
as follows:

x(2) = Ax(t) @
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The solution to the previous equation always exists and

can be expressed as follows:
x(1) = D(t,19)x, ®

The transition matrix ®(t,t,) is the solution of the matrix
differential equation as

D(1,19) = AD(1,1))  D(tg,t0) =1 ©)
which has the explicit form
D(1,1)) = D(t - 1) = ")
0 0 (10)

=1+A(t—t0)+%[A(t—t0)]2+~-

This is the Taylor series expansion and it converges for
all A.
Now, consider the state equation as follows:

x(t) = Ax(t) + Bu(t)  x(ty) = X, (12)
If u(t) is piecewise continuous for all t, we have
x(t) =Dt —ty)x, +fq>(t -T)Bu(t)dt
0 AL (12)

= ey, +feA("T)Bu('c)d1:
0

Thus, the discrete-time state space equation can be
summarized as follows:

x(ty,) = eA(tm—f/f)x(tk) +f/’”' eAlkn _’A')Bd'cu(tk)
b (13)
() = Cx(t;) + Du(ty)

15 20 25 30 35

Time(sec)

o 5 10

Fig. 2. Generation of an Artificial Earthquake Compatible with a Floor Response Spectrum
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Fig. 3. Idealization of a Cabinet and Identification of its Earthquake-equivalent Load
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It can be written for the incremental time step as follows:

x(ty ) =e T x(t,) + jj eT Bdwu(t,)

Y(t) = Cx(8;.) + Du(ty)

where x(t), y(t) and u(ts) are the input force, the response
acceleration and measurement noise vectors at time step
k(k =1,2,...,n); nis the number of time steps, respectively.
A, B, C and D are the system matrices.

(14)

2.3 Stochastic Subspace Identification Method

The relationship between the responses of the structure
and the impact forces can be identified in the form of a
discrete-time state space equation (SSE) as Eq. (14).
Various algorithms have been developed for identification
of the discrete-time SSE. This study uses the N4SID
algorithm proposed by Overschee and Moor [9, 10],
which is a variant of the subspace identification method
and uses very simple parameters. N4SID has major
advantages that are non-iterative and rapidly converged.
The N4SID is derived by using geometric arguments and
a systemic theoretical approach similar to the realization
theory [11].

The state vector x(K) is defined to be a linear combination
of the past inputs and outputs [12]:

x(k) = Jp(k) (15)
where

plk) =y (k=1),+y" (k= N),u" (k =1),
oy (k= N (k=1),-u” (k= N)]

and p(Kk) is referred to as the “past” for sample k. The
dimension of the past is the number of lags N. The state
vector x(k) is calculated from the data and is not specified
to be a physical state of the system. After J has been
calculated (see below), the state vector can be estimated
by Eg. (15). The state-space model matrices can then be
estimated through linear regression.

_ OV([x(k + 1)} [x(k)})x Y [x(k)}

(16)

x(k)
u(k)}) (17)

A B
C D (k) | |u(k) y(k)

The calculation of J distinguishes the various subspace
algorithms from one another. In the N4SID approach, J
results from a series of geometric arguments (or linear
algebraic arguments) based on a set of matrix equations
for the evolution of a linear system [13] based on a weighted
singular value decomposition (SVD) [14] as follows:

S, 0

V1T

vi (18)

svd(cov(p, 1)) =[U, Uz][

where f is the “conditional future” estimated by the
past observations, p(k), U, U,, Vi and V; are orthonormal
matrices UU" = U'U =l and W' = V'V = |, and S, is the
singular value matrix with high contributions and S; is the
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singular value with negligibly small values on its diagonal.

N4SID only makes use of the lower dimensional sub-
matrices with significant contributions by U, and S,, and
ignores tiny contributions by U, and S,. By inspecting the
whole singular value matrix, the size of S; can be determined
as the number of significant or non-negligible singular
values in the whole singular value matrix which is equal
to the order of the SSE model.

3. NUMERICAL VERIFICATION

Numerical simulation tests for a given earthquake
motion were performed on an electrical equipment cabinet
to verify the algorithm of this study. The predicted seismic
responses were obtained by applying the procedure
proposed in this study. The simulated seismic responses are
the analysis results computed by the numerical integration
for the earthquake motions which are identical to the
motions of the simulation tests.

In this section, three different analytical models are
presented to be used in the numerical verification of the
proposed algorithm, which are a lumped-mass beam stick
model, a frame model, and a 3-dimensional finite element
model to represent the cabinet structure, respectively. The
models were constructed by considering the characteristics
of a seismic monitoring system cabinet for nuclear pore
plants whose main functions are alarming and monitoring
seismic signals at the site of the plant. As shown in Figure 4,
the cabinet includes very complex units and components
inside. The electrical cabinet typically consists of an
internal steel frame of channels and angles, thin steel plate
covers enwrapping the frame, with intermediate diaphragms
of thin steel plate inside. The cabinet has front and rear
entrance doors and all structural components are inter-
connected with each other by bolting or spot welding.

Dynamic response analyses using the direct integration
method were performed to obtain the vibration responses
of the models due to the impact forces and the seismic
motions. A 5% damping factor as a percentage of critical
damping was considered in the dynamic analyses. A
general purpose structural analysis program [15] was used
to generate the response acceleration signals in numerical
simulation tests excited by an impact hammer and by
seismic motions.

3.1 Lumped-mass Beam Stick Model

A typical instrument cabinet was selected as a model
for verification of this study. For the first stage of
verification, a lumped-mass beam stick model with four
nodal points was constructed as shown schematically in
Fig. 4. The lumped masses of an idealized system at each
node were determined by referring to the mass distribution
of an actual cabinet. The beam element was modeled using
the equivalent properties with an area of 91.52 x10*m? and
a moment of inertia of 3.7934 %< 10°m?*. The model properties
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were determined by referring to a previous study [16].
The impact hammer tests were performed at the four
points from node 2 to node 5 continuously in time. 1 kN
of impact force was applied to each node and the
acceleration responses were also collected at these nodes.
Then the impact forces and the acceleration responses in
the time domain (Figs. 5 and 6) were used as input-output
data to build the state-space model. Practically, with more
times of impacts at each node, a more reliable estimation

IMpact 4 e—ge- ("

41.2kg

Fig. 4. Lumped-mass Beam Stick Model

of the state space equation can be achieved. In this study,
two times of impacts at each node were simulated to show
the effectiveness and efficiency of the proposed procedure.
Based on a set of input and output measurements, a state-
space equation model was identified using N4SID. The
order of the state-space equation was selected as 8 by
inspecting the singular values obtained by Eq. (18).

The artificial earthquakes were generated as time
history acceleration input motions at the cabinet base,
which are compatible with a target response spectrum as
shown in Fig. 2. For each of ten artificial earthquake cases,
the equivalent earthquake force f. was calculated by feeding
the measured base motion (g into the SSE model as an
input to estimate earthquake responses. The simulated
and predicted earthquake responses at nodes 3 and 4 are
compared in Fig. 7. The predicted response is in reasonable
agreement with the measured response as shown in Fig. 7.

The simulated and predicted seismic responses were
then converted to ICRS to verify the effectiveness of the
proposed procedure. The comparison of mean ICRS from
ten sets of simulated and predicted seismic responses shows
a good convergence as shown in Fig. 8.

3.2 Frame Model

The proposed algorithm was then verified through a
detailed frame model as shown in Fig. 9. The beam
elements were modeled using the equivalent properties
with an area of 45.76 X10“m? and a moment of inertia of
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Fig. 6. Floor Acceleration Responses for the Lumped-mass Beam Stick Model
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1.8967 x10°m*. To predict the seismic response based on
the SSE model, the equivalent earthquake force fe was
calculated by idealizing the model to a lumped-mass
system.

The numerical simulation tests were performed in a
manner similar to the lumped-mass beam stick model case.
The impact hammering was applied at the four points
from node 2 to node 5 on the frame model continuously

in time, and the acceleration responses were also collected
at these nodes. The impact forces and the acceleration
responses in the time domain (Figs. 10 and 11) were used
as input-output data to build the state-space model. A
state-space equation model was identified based on a
relationship between input and output signals.

The simulated and predicted earthquake responses at
nodes 3 and 4 are compared in Fig. 12. The predicted
response is in reasonable agreement with the measured
response even with a little difference as shown in Fig. 12.
The mean ICRS from ten sets of simulated seismic
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Fig. 7. Comparison of Seismic Acceleration Responses for the
Lumped-mass Beam Stick Model
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responses shows good convergence with that obtained by
prediction as shown in Fig. 13.

3.3 3-Dimensional Finite Element Model

The proposed algorithm was additionally verified
through a detailed finite element model. In this verification,
a 3-dimensional finite element model was constructed as
shown in Fig. 14. This model was constructed by combining
3-dimension plate elements and frame elements. The
plate elements represent the roof and exterior wall plates,
interior diaphragm plates, and floor plates. The frame
elements were additionally modeled to represent the
horizontal and vertical stiffeners in the interior of the
cabinet. 108 frame elements and 203 plate elements were
used to represent the stiffness of the model. The structural
masses were automatically computed by inputting the
mass density of the structural element. The additional
masses for non-structural members and attachments like
doors were inputted as lumped masses at the corresponding
nodal points. This model was constructed by referring to
a previous study [16].

The numerical simulation tests were performed and a
state-space equation was identified in the same way as in
the previous model cases. In order to identify the state-
space equation model, the impact hammering was applied
at the four nodes as shown in Fig. 14. The nodal masses
of the 3-dimensional finite element model were calculated

by considering the actual mass distribution of the cabinet.
Fig. 15 and Fig. 16 show the impact forces and the
acceleration responses in the time domain. The simulated
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Fig. 12. Comparison of Seismic Acceleration Responses for
the Frame Model
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and predicted earthquake responses at nodes 3 and 4 are
compared in Fig. 17. The predicted response shows
reasonable agreement with the measured response even
with some differences in the time variation. The comparison
of predicted and simulated mean ICRS shows good
matches as shown in Fig. 18. The slight difference in the
peak spectral acceleration resulted from the nodal mass
estimation error and the simplification of the model.

4. CONCLUSION AND DISCUSSION
The ICRS prediction procedure is presented and verified

by numerical simulation tests using three structural models.
From comparisons of the predicted and simulated ICRS
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of the numerical models, the proposed algorithm appears
to efficiently predict the ICRS of the cabinet structures.

The presented procedure eliminates uncertainty
associated with constructing the analytical model of an
electrical cabinet having complex mass distribution and
stiffness. The proposed method is especially effective
and efficient for cabinet structures now operating in
nuclear power plants. It can be performed reliably with
the aid of impact hammer tests, but it is not suitable for
shaking table tests, as cabinets already installed in the
operating plants cannot be removed from the plants to be
mounted on a shaking table. The proposed algorithm can
be developed as a candidate algorithm for ICRS prediction
of cabinet structures. It is expected that the procedure
proposed in this study will be used in the SQ of electrical
equipment installed in operating plants.

For further study, experimental validations might be
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performed to obtain more confidence in the proposed
algorithm. There is also a possible problem with obtaining
the lumped mass matrix since the exact weights of a
cabinet system may not be readily available. It may be
necessary to develop a way to estimate the lumped mass
matrix from impact hammer tests.
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