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1. INTRODUCTION

Structures subjected to dynamic contact exist in many
industrial and engineering fields[1-12]. In the nuclear
industry, there are several regularly occurring examples
of dynamic contacts, such as U tubes in the heat exchanger
and fuel rods in the reactor of nuclear power plants. In
these situations, it is important to evaluate whether the
structural integrity is sufficiently robust against wear. An
impact model for heat exchanger tubes that considers
their support width was proposed by Hassan et al., and the
dynamics of the loosely supported tubes was computed
[12, 13, 21]. Knudsen et al. [8] simulated the dynamics
of vibro-impacts that represented fuel rods with gap
supports and compared the predicted wear work rates with
the experimental results.  

For a fuel rod, due to the thermal relaxation of the
elastic supports and the creep down of the fuel rod
cladding, a gap develops between the fuel rod and the
supports. Field experience has demonstrated that the gap
can develop due to the relaxed support, the creep down
of the fuel rod, and the growth of the grid structure after

approximately one cycle of burn-up. Therefore, the
dynamic impact caused by turbulent coolant flow is
unavoidable. The degree of freedom in the fuel rod is
restrained at a certain time when the gap closes. When
the fuel rod contacts the support, a reaction force develops
and this force can be regarded as an extra external force.
The system is usually modeled as a beam with extra
external forces or pseudo forces that simulate dynamic
contact conditions [11-13]. A time domain solution can
be obtained using the direct implicit integration of the
governing equation using the Newmark method; however,
the predicted solution may be unreliable due to unknown
contact forces. Thus, a method that uses previous contact
forces to estimate the contact status has been introduced
[14]. Since this method uses the previous contact force as
the current force, the time increment should be maintained
at a small value. Another method using Taylor’s expansion
has also been introduced [3, 8]. This is an approximation
of the contact force using the proposed Taylor series
expansion in order to improve numerical stability, but it
must be noted that the slope of the contact force should
be continuous at contact since Taylor’s expansion is

This paper proposes an approximated contact force model to identify the nonlinear behavior of a fuel rod with gap supports;
also, the numerical prediction of interfacial forces in the mechanical contact of fuel rods with gap supports is studied. The
Newmark integration method requires the current status of the contact force, but the contact force is not given a priori.
Taylor’s expansion can be used to predict the unknown contact force; therefore, it should be guaranteed that the first derivative
of the contact force is continuous. This work proposes a continuous and differentiable contact force model with the ability to
estimate the current state of the contact force. An approximated convex and differentiable potential function for the contact
force is described, and a variational formulation is also provided. A numerical example that considers the particularly stiff
supports has been studied, and a fuel rod with hardening supports was also examined for a realistic simulation. An approximated
proper solution can be obtained using the results, and abrupt changes from the contacting state to non-contacting state, or
vice versa, can be relieved. It can also be seen that not only the external force but also the developed contact force affects the
response.
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relevant when the first derivative is continuous.
If a structure accompanied by a contact phenomenon

has a large degree of freedom, the computation time can
become a serious problem. Significant model reductions
can be made using a finite number of normal modes [1,
10], and computation times can be drastically reduced for
a system with a large degree of freedom. However, when
stiff springs are prescribed, it is recommended that the
high modes are not truncated since the high frequency
impact cannot be described with insufficient modes [3].

This paper proposes a continuous and differentiable
contact force model that is required to calculate its tangent
stiffness or Jacobian. It is also shown that the contact
force model has a potential function that is convex and
differentiable over the entire domain. The response is
predicted using a step-by-step incremental solution. The
impact of a fuel rod colliding with gap supports is solved
using the same incremental approach. Numerical examples
are provided to verify the reliability of the contact force
model, and an application example is also listed for a more
realistic situation. Fretting wear due to the grid-to-rod
interaction is a root cause of fuel failure; therefore, it is
required in order to accurately predict or evaluate wear
on the fuel rod. The objective of this paper is to develop a
primitive vibration simulator for fretting wear evaluation.

2. STRUCTURE DESCRIPTION FOR THE
MECHANICAL MODEL

A fuel assembly is composed of approximately two
hundred fuel rods supported by multiple spacer grids that
consist of an arrangement of interlocked straps with springs
and dimples that are formed within the straps. These
springs and dimples grip and hold the fuel rods in their
proper position within the fuel assembly structure. To
maintain firm support conditions, the top and bottom spacer

grids are usually fabricated from nickel alloy, which is less
sensitive to thermal relaxation and irradiation. The mid
grids, unlike the top and bottom grids, are fabricated from
zirconium alloy, which is sensitive to thermal relaxation
and irradiation. 

Uranium pellets are loaded in the fuel rod, and there
is a gap between the pellets and the inner space of the rod.
The gap, despite being present, is not considered because
it may be reduced due to both the creep down of the fuel
rod cladding and the swelling of the pellets during service.
The grid structure is complicated, and Fig. 1 shows a part
of the mid grid design. In Fig. 1, a fuel rod is loaded into
each cell, and a spring supports one side of each fuel rod
surface while the opposite side is supported by a pair of
dimples. 

Fig. 2 shows the schematic of the structure used in
this study. Only the unilateral contact in one plane will
be considered in this study, and any out-of-plane motion
will not be considered. It is assumed that the elastic
supports in the top and bottom grids constantly maintain
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Fig. 1. Detail of Grid Assembly Structure

Fig. 2. Simplified Fuel Rod with Gap Supports
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contact with the fuel rod. It is also assumed that the
pellet’s contribution to the second moment of inertia in the
structure is insignificant, and thus disregarded. Table 1
shows the mechanical properties for each domain in the
structure. Since the fuel rod cross section properties such
as the cross section area and density are not uniform, the
structure is divided into four regions with different
properties as shown in Table 1. Young’s modulus is 77.95
GPa for every domain, since the fuel rod is made from
zirconium alloy. Hereafter, the spring will be referred to
as the upper support and the dimple will be referred to as
the lower support. The upper supports in the bottom and
top grids are located at 96.4 mm and 3820.3 mm from the
left, respectively. The upper support in the first mid are
distributed evenly over a span of 529.6 mm. Each upper
support is placed in the center of the two lower supports
in the grids. The distance between the two lower supports
is 40.6 mm for the mid grid and 29.4 mm for the top and
bottom grids. Details of their dimensions are provided in
Fig. 2.

3. EQUATION OF MOTION AND CONTACT FORCE
MODEL

To consider the contacting force acting on the beam
as an external force, the equation of motion can be written
as follows [1, 3, 8, 10, 12]:

where u and [M] denote the displacement vector and
mass matrix, respectively. [K]L, [C], and f ext are the linear
stiffness matrix, damping matrix, and external force vector,
respectively. For the linear supports, the last term in Eq.
(1), f C , is the contact force. The ith component can be
written as:

where gi and ki
c denote the ith gap distance and ith support

spring constant, respectively. Note that Eq. (2) is effective

for the upper supports only: the supports above the beam
in Fig. 2. For the lower supports, the contact force is active
only when the displacement is lower than the gap. From
this point, only the upper support will be discussed. 

Eq. (1) must be satisfied at all times and assuming
the solution at time t is known, the displacement and its
time derivatives at time, t +∆t, are expressed as presented
in Eq. (3) for the Newmark method:

where ∆t is the time increment. Usually, considering the
stability of the integration [22], 1/4 and 1/2 are preferred
for β and γ , respectively. When substituting the velocity
and the acceleration of Eq. (3) into Eq. (1), the solution
for the displacement at time t +∆t is expressed as:

where [K] is dynamic stiffness, which is defined as:

where F in Eq. (4) is another force vector that results
from the inertia and damping at time t, and it can be defined
as in Eq. (6):

The solution can be found based on Eq. (4), but it
should be noted that the contact force, f C , is unknown
at time t +∆t. Johansson [3] attempted to solve this problem
using Taylor’s expansion of the contact force. That is:

Table 1. Material and Sectional Properties of the Fuel Rod

Ω1

Ω2

Ω3

Ω4

5.253E4

4.186E5

9.893E4

4.107E4

6.581E-5

1.548E-5

1.548E-5

6.581E-5

3.432E-10

1.420E-10

1.420E-10

3.432E-10

Domain density (kg/m3) cross section area (m2) area 2nd moment of inertia (m4)

(1)

(4)

(5)

(7)

(6)

(2)

(3)



This expression is meaningful when the contact force
is differentiable, but the contact force model in Eq. (2) is
not differentiable at ui = gi. The solid line in Fig. 3 shows
the graphical representation of the model, and it is
continuous; however, the slope is not visibly continuous.

To relieve this drawback, an approximated contact
force can be defined as:

where ε denotes a reasonably small positive number.
Essentially, Eq. (8) denotes the continuously varying
contact force shown in Fig. 3. Clearly, the contact force
is not only continuous, but the slope is also continuous
over the entire displacement domain. With Eq. (8),
substituting Eq. (7) to Eq. (4), it leads to: 

where [T] is the tangential stiffness of the contact force,

∂ u
–
∂ f C

. Considering that [K] is linear and constant while

[T] is nonlinear, Eq. (9) can be rewritten as:

where P indicates the terms in the right side of Eq. (9).
An approximated solution, especially for a nonlinear
structure, can be found using the Picard iteration [15].
Furthermore, an iterative solution based on Eq. (10) is:

where the left superscript denotes the iteration number.

The initial values for the iterative terms are:

Since the solution is iteratively obtained, convergence
conditions are required to verify the integrity of the
solution. Usually, a norm for the residual force or a norm
of the incremental solution is used for these conditions.
The convergence of the problem is dependent on the time
increment, and the theory for the convergence of the
integration method has already been discussed and well
established by Hughes [22].

4. POTENTIAL FUNCTION OF THE CONTACT
FORCE AND VARIATIONAL FORMULATION

The dynamic equation for the fuel rod structure can
be restated using the variational method perspective: the
system can be thought of as a beam with resilient obstacles.
It is well known that the dynamic contact problem can be
characterized using a variational inequality [16, 17]. The
variational formulation is required to demonstrate the
uniqueness and existence of the solution. As will be shown
in this section, because the suggested contact force model
is continuous and convex, it can be stated that the solution
is unique according to the Lax-Milgram lemma [23]. For
a specified time duration, τ, the first variation of the total
potential energy of the structure satisfies the inequality
rather than the equality [15].

where E, I, ρ, and f are Young’s modulus, the second
area moment, the density of the fuel rod, and the given
external force, respectively. Ω denotes the entire domain
for the structure, and δ denotes the first variation of the total
potential energy. It should be noted that the displacement,
u, is a kinematically admissible displacement field that
satisfies the essential boundary condition. is the potential
energy of the supports in the top and bottom grids. Thus,

is a summation of each potential of the supports in the
top and bottom grids, and each one is expressed as:

where ui is the motion at the support location.
It has also been theoretically proven that the variational

inequality becomes equality when the convex and Gâteaux
differentiable potential function resulting from contact
can be defined [16]. When the potential function of the

450 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.43  NO.5  OCTOBER 2011

PARK et al.,  Contact Force Model for a Beam with Discretely Spaced Gap Supports and its Approximated Solution

Fig. 3. Approximated Contact Force (Dotted Line)

(8)

(9)

(13)(11)

(12)

(10)

(14)



contact force, which is convex and differentiable, is found,
then the total potential can be written as:

where the last term is from the contacting force in the mid
grid supports and m is the number of contact points. An
approximated potential function for the suggested contact
force model can be defined as:

It is clear that Eq. (16) is continuous and convex as
shown in Fig. 4. It is also differentiable at the two boundary
points, gi – ε and gi + ε, and its gradient denotes the contact
force, Eq. (8). Therefore, the variational equality problem
can be defined, and an approximated solution can be
obtained. The constant terms in Eq. (16) are arbitrary.
Another potential function can be a candidate when the
continuity is satisfied. This work prefers zero potential at
the non-contact condition, ui < gi – ε, since it is physically
more meaningful because the support is not effective
before the gap closes. 

Using Eq. (16), the variation of Eq. (15) equals to zero,
and it can be written as in Eq. (17):

As ε approaches 0, a more exact solution can be found,
and the finite element formulation of Eq. (17) is equal to
Eq. (1) using the contact force in Eq. (8). 

5. NUMERICAL ANALYSIS

A finite element model was prepared based on the
mechanical properties presented in Table 1 and the
configuration described in the previous section. The
model consists of 62 nodes, and the supports in the top
and bottom grids were always in contact with the beam.
It is assumed that the supports in the top and bottom
grids behave linearly, and their spring constants are listed
in Table 2. The contact stiffness in Table 2 is based on
the measured static load-deflection characteristics.
Eighteen (18) contact points, which represent the six mid
grids, were distributed along the beam. 

5.1 Case Study: Harmonic Excitation
When the contact stiffness is very large, the contacting

nodes of the beam cannot move above or below the gaps.
In this example, the stiffness of the 18 supports in the
mid grids is set to 5.0E5 N/m, which is approximately
eight times larger than that of the upper support in the
real structure. Also, all 18 gaps are set to 0.25 mm. Two
external sinusoidal loads are applied to randomly chosen
points that were placed at 223 mm and 2052 mm from
the origin. The magnitude of the loads was 8.9 N and the
excitation frequency was 10 Hz for both loads. Rayleigh
damping is used, and the damping for the simulation is
[C]= α[K]. The damping parameter, α, is selected to damp
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Table 2. Spring Constants for the Top and the Bottom Grids

Top grid

Bottom grid

1.51E5

5.41E4

Upper support (N/m)

2.89E5

1.59E5

Lower support (N/m)

Fig. 4. Potential Energy of the Approximated Contact Force 

(16)

(15)

(17)
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out all high frequency components after the 50th natural
frequency. Therefore, according to the basic modal analysis
theory, the damping coefficient, ςn, can be expressed as:

where fn denotes the nth natural frequency. Considering that
the 50th natural frequency of the structure is 1.188E3 Hz
and assuming that the 50th mode is critically damped (ς = 1),
it is found that α should be greater than 2.68E-4. In this
case, 2.7E-4 was used for α. The time increment, ∆t, in the
example is 2.0E-5 sec. According to Au-Yang’s work
[19], the effective random pressure spectrum is within
approximately 100 Hz when an estimated cross flow
velocity of 1 m/sec in the fuel bundle is used. Therefore,
it is thought that the simulation should be sufficiently
conservative because the external pressure spectrum range
is within the considered number of modes.

Figure 5 shows the global deflection shape at the
specified instances when ε is 0.0025. The two peaks at
0.01 sec are due to the applied external loads at those
positions. The restrained motions at the gap supports are
also shown in Fig. 6(a) and Fig. 7(a). The motion and
contact force for Fig. 6 and Fig. 7 are derived from the
contacting nodes in the third mid grid, and the results
include the solution at ε = 0. It is apparent that Eq. (8)
with ε = 0 is reduced to Eq. (2) and that, in this case, the
first derivative of the contact force is not continuous at
the contact condition. Considering this, the contact force,
based on Eq. (8), must be infinitive when ε = 0, but it is
not expected that proper solutions are able to be obtained
in those conditions. As is shown in detail B of Fig. 8(a),
this means that there is no instance where the displacement
at the contacting node coincides precisely with the gap
distance. If the current motion coincides with the gap
distance, the first derivative of the contact force cannot

be defined and a proper solution cannot be obtained.
Considering the given gap distance, the results in Fig. 6(a)
and Fig. 7(a) are reasonable because the motions are
restricted to approximately 0.25 mm and -0.25 mm,
respectively. Figure 6(b) and Fig. 7(b) show the contact
forces, and a negative contact force develops in the upper
support while a positive one can be seen in the lower
support. The downward motion for the contacting nodes
corresponding to the upper supports is also restricted by
the two lower supports as shown in Fig. 2. Therefore, the
motion in the contacting nodes for the upper supports is
more restrictive than that of the nodes in the lower
supports. As ε approaches zero, the variation of the results
becomes indistinguishable. As shown in Fig. 6 and Fig. 7,
the results in the case of ε = 0 are indiscernible from those
when ε = 2.5E – 4. 

(18)

Fig. 6. Displacement and Contact Force at the Upper Support (Dot : ε = 2.5E– 3, Dash Dot : ε = 2.5E– 4, Solid : ε = 0)

Fig. 5. Deflected Shapes (Solid : 0.01 sec., Dot : 0.02 sec.,
Dash Dot : 0.03 sec.)



The force-displacement plots at the same contacting
point are delineated in Fig. 8 as a function of ε,. The
macroscopic views show no difference in each case.

Multiple force-deflection curves can be seen in the
magnified view of Fig. 8(a), which indicates that the non-
contacting state jumps to the contacting state or vice versa.
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Fig. 7. Displacement and Contact Force at the Lower Support (Dot : ε = 2.5E– 3, Dash Dot : ε = 2.5E– 4, Solid : ε = 0 )

Fig. 8. Force-displacement Curves Including Magnified Views



This is because the defined contact model, Eq. (2) or Eq.
(8) where ε = 0, is not smooth at the contacting point. As
mentioned above, although the displacement at the
contacting node never coincides exactly with the gap
distance, it must be noted that the contact force at the next
time step cannot be defined if the current displacement
coincides with the gap distance. Multiple curves can also
be seen for ε = 2.5E – 4 in Fig. 8(b), but the multiple
curves lie more closely together than those of Fig. 8(a).
The contact model with a small positive ε in the specified
region behaves as a buffer spring that prevents any abrupt
changes of the contacting force. Therefore, more stable
and smoother results are expected, but the accuracy will
be reduced as ε becomes larger, as shown in Figs. 8(a) to
8(c). However, more reliable results can be obtained with
a much smaller time increment, as shown in Fig. 8(d).
Fig. 9 represents a power spectrum of the motion, and it
is shown that the super-harmonic and sub-harmonic
components of the excitation frequency, 10 Hz, exist due
to the developed contacting force.

5.2 Case Study: Application Example
Particularly for a nuclear fuel grid structure, hardening

supports are more realistic than linear ones; for example,
Fig. 10 shows the load-deflection test result of a support
in a mid grid structure. It is derived from the four cycles
of the loading and unloading conditions, and it can be
seen that the contact force can be approximated using a
polynomial function. The load-deflection curve shows that
the support hardens as the displacement grows. These types
of hardening effects can be simulated using a restoring
force that is proportional to the cubic displacement, as
with the Duffing equation [18]. In this example, thus, the
hardening support can be expressed as in Eq. (19):

Based on Eq. (19), it is true that both the contact force
and its slope are continuous at ui = gi. Therefore, the
buffer regions as in Eq. (8) are not required. Under these
conditions, the individual potential energy of the gap
support can be expressed as:

It is true that the potential function is convex and
differentiable; thus, a unique solution can be found. The
spring constants that best fit the measured data were
chosen for the hardened supports: 2.48E5 N/m and
6.73E4 N/m for the lower support and the upper support,
respectively. It was reported that the gap sizes in the
pressurized water reactor (PWR) fuel assembly after the

finishing service were varied, but the largest was
approximately 0.05 mm; thus, the gap distance in this
example was 0.05 mm for every gap support.

The fuel rod is exposed to a turbulent flow, thus the
bandwidth limited white noise will be applied to every
middle node in each span. Field experience has confirmed
that the average cross flow velocity between the two
adjacent fuels is approximately 1 m/sec. According to the
normalized random power spectral density [19], when a
9.1 mm diameter rod is used, the major frequency
components are distributed below 100 Hz. Although the
experimental condition is unrealistic, the experiment results
demonstrate that the lift force and drag force power
spectrum was less than 1 N2/Hz [20]. Therefore, it is
assumed that their frequency components are distributed
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(19)

(20)

Fig. 9. Power Spectral Density Function in the Response

Fig. 10. Typical Load-deflection Curves for a Support



between 0 and 100 Hz, and that the power spectral density
function is defined to provide 1 N in the root mean square
(RMS) value. Fig. 11 shows an example of the external
force in the time and frequency domains.

The Newton-Raphson method [15], which requires
the Jacobian of the stiffness matrix, was chosen to solve
the equation, since the contact force is sufficiently smooth.
The residual force of Eq. (9) at time t +∆t can be defined
as:

Expanding Eq. (2) in a Taylor series, neglecting the higher
order terms in u and noting that all external forces are
fixed, the incremental solution can be obtained as follows:

where f̂ denotes f ext
t +∆t + f C

t – [T] u t + F . The
tangential stiffness, [KT] in Eq. (22), can be written as:

where b j is composed of one at the jth support position
and zeros elsewhere, and the superscript, Tr, denotes a
transpose. The increment can also be obtained iteratively,
and the solution at the next time step can be written as:

It should be noted that because the contact force is
estimated based on Taylor’s expansion, the Newton-
Raphson method requires a second derivative of the
contact force as shown in Eq. (23).

The time increment, ∆t, in the application example is
also 2.0E-5 s, and the same damping from the previous
example is used. The deflected shapes are delineated in
Fig. 12 in a few seconds, and in the time history of the
contacting node on the beam in Fig. 13. Since the applied
forces are band limited, the responses are also band limited
as shown in Fig. 13. The dominant frequency components
in the response signals are distributed within 50 Hz. This
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(21)

(23)

(24)

(22)

Fig. 11. Applied Random force at the Middle of the First Span from the Left

Fig. 12. Deflected Shapes (Solid : 0.01 sec., Dot : 0.02 sec.,
Dash Dot : 0.03 sec., Dash Dot Dot : 0.04 sec.)



is due to the contact force spectrum shown in Fig. 14,
and it is observed that the intensive components are within
50 Hz. The intensity of each contact force frequency
component is dependent on the gap size and spring
constants. Fig. 15 shows the developed contact force
versus motion at the upper support, and this shape is
parabolic because the contact force model is defined as
such. The displacement of the contacting point with
respect to the applied force is also computed, and Fig. 16
shows the root mean square displacement depending on
the applied external force. It can be seen that the developed

RMS displacement values are less than 1 mm and could
be reduced when friction is considered.   

6. CONCLUDING REMARKS

The dynamics of a fuel rod with discretely spaced
gap supports have been discussed. For the structure
accompanied by a contact phenomenon, the dynamic
contact force model needs to be defined. Solutions can be
obtained using the Newmark method, which requires the
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Fig. 13. Response Signal in Time and Frequency DDomain

Fig. 14. Contact Forces in Time and Frequency Domain



contact force a priori. An unknown contact force in the
current time can be estimated using the Taylor expansion.
However, if the contact force model is not smooth at one
point, the contact force at the non-smooth point cannot
be predicted. Therefore, a dynamic contact model should
be differentiable over the entire displacement field. The
model suggested in this work allows differentiation over
the displacement field, and using this model, an
approximated solution can be found. It has been shown
that the suggested model can be derived from the convex
and differentiable potential function. Therefore, although
it is an approximate solution, a unique solution can be
obtained with this model. 

Numerical examples have been provided, and it has
been shown that the suggested model works well and an
abrupt change from a contacting state to a non-contacting
state or vice versa can be relieved. For harmonic excitation,
the sub-harmonic and super-harmonic components are
found in the response signals, resulting from the developed
contact force. To simulate a more realistic case, the
dynamics of a fuel rod with hardening supports was
discussed. The simulation demonstrated that the response
is dependent on the contact force as well as an external
force. The Rayleigh damping parameter used in this work
is an assumed value for a conservative estimation. If
reliable information for the damping in a reactor condition
is provided, more valuable results are expected.

The fuel rod model can be expanded to cover out-of-
plane motion with the friction phenomena, and the work
can be helpful in solving such complex structures with
contact conditions. During contact, support damping
could have an effect because any contacting energy
cannot be transmitted entirely. Such support damping is
not considered for a simple calculation, but it is expected
that a more reliable model can be developed when the
impact damping is included. In addition, the sliding force

that considers friction is required to estimate the wear
rates in the fuel rod. The contact force model that
considers friction can assist in analyzing fretting wear
related problems. Finally, the contact stiffness in the
paper is based on the measured static load-deflection
characteristics; however, the improved stiffness can be
used considering the stress concentration or energy
dissipation.
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