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1. INTRODUCTION

In a large-sized vessel type structure such as the
reactor pressure vessel in a nuclear power plant, an
unexpected loose part can cause serious problems during
plant operation. The loose part may collide against the
inner wall or the internal structures of the vessel, which
may give rise to negative effects on the safety and health
of the structure. Accordingly, for the maintenance of a
nuclear power plant, monitoring whether there are any
loose parts in the reactor pressure vessel is an important
task and one of the functions of the Nuclear Steam
Supply System Integrity Monitoring System (NIMS) [1].

Generally, parts that become loose are metal pieces
such as bolts, nuts, fragments, sleeves, and so on. There
are two major goals in the task of monitoring the presence
of loose parts in a large-sized vessel: localization, that is,
finding where the loose part is, and mass estimation,
estimating the weight of the loose part. For various types
of structures, several different methods such as the
hyperbola intersection method, the circle intersection
method, the triangular intersection method, and modified
and improved versions of these approaches have yielded
successful localization [1-4]. In contrast, mass estimation

methods using accelerometers or acoustic emission
sensors [5,6] still require further improvement.

Conventional methods for mass estimation exploit
the impact signal generated when a loose part collides
against a structure. These methods have some shortcomings
that reduce the accuracy and reliability of the estimation.
For example, an analytic method based on Hertz’s impact
theory [7] suffers from an uncertainty problem that should
be resolved. Furthermore, it is assumed that the two
colliding solid objects (two solid spheres or one solid
sphere and one plate) are rigid, which is usually not true
in the real world. Another approach is the frequency ratio
(FR) method [8]. FR is defined as follows:

where f is the frequency, S(f) is the auto-power spectrum
density (APSD) of the measured impact signal, fL,max and
fL,min denote the maximum and minimum frequencies of
the low frequency band, respectively, and fH.max and fH.min

are the maximum and minimum frequencies of the high
frequency band, respectively. Here, the low frequency
band is the frequency range that is subjected to impact

It is critically important to identify unexpected loose parts in a nuclear reactor pressure vessel, since they may collide
with and cause damage to internal structures. Mass estimation can provide key information regarding the kind as well as the
location of loose parts. This study proposes a mass estimation method based on an artificial neural network (ANN), which
can overcome several unresolved issues involved in other conventional methods. In the ANN model, input parameters are the
discrete cosine transform (DCT) coefficients of the auto-power spectrum density (APSD) of the measured impact
acceleration signal. The performance of the proposed method is then evaluated through application to a large-sized plate and
a 1/8-scaled mockup of a reactor pressure vessel. The results are compared with those obtained using a conventional method,
the frequency ratio (FR) method. It is shown that the proposed method is capable of estimating the impact mass with 30%
lower relative error than the FR method, thus improving the estimation performance.

KEYWORDS : Mass Estimation, Artificial Neural Network, Discrete Cosine Transform, Loose Part Monitoring, Reactor Pressure Vessel

343NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.43  NO.4  AUGUST 2011

http://dx.doi.org/10.5516/NET.2011.43.4.343

(1)



mass. The high frequency band is the range wherein
features of the used sensor are dominant and the APSD
pattern is rarely changed by external excitation. The FR
method has a wide uncertainty range of approximately 0.7
decade for the estimated mass [8]. In addition, the user
should select how to determine the maximum and minimum
frequency limits for dividing the whole frequency range
into low and high ranges.

The present study develops a mass estimation method
using an artificial neural network (ANN) and a discrete
cosine transform (DCT) in order to estimate the mass of
loose parts with improved accuracy and reliability.
Figedy and Oksa [9] stated that using an ANN with 4
input parameters, the mean values of the APSD in four
defined frequency bands, could improve the estimation
performance. Unfortunately, they did not establish a
criterion to determine the number of frequency bands.

In this study, first, a method of extracting the pattern of
the APSD curve of the impact signal is studied. There are
several kinds of nuisance variables that affect the pattern
of the APSD curve such as the transmission properties of
the structure, loose part mass, sensor position, impact
energy (or velocity), loose part shape, coupling between
the structure and the other medium (e.g. fluid), and so on.
Here, the effects of loose part shape and coupling between
media are not considered due to their variation and difficulty
of measurement.

Second, an ANN model is designed by using quantitative
variables expressing the distribution pattern of the APSD
obtained from each sensor as input and the actual mass of
an impacting object as output. Next, the FR method is
applied to the impact signals used for the second stage.
Finally, through a comparison between the results obtained
from the proposed method and the FR method, the
performance of the mass estimation method using an
ANN is examined. A large-sized plate and a 1/8-scaled

mockup of a reactor pressure vessel are employed as the
application structures.

2. FREQUENCY CHARACTERISTICS OF IMPACT
SIGNAL

It is well known that the mass of a loose part
considerably changes the APSD curve of an impact
signal [10]. For this reason, the APSD of an impact
signal is considered an important factor for estimating a
loose part mass. To confirm this and to see the relation
between the impact condition and APSD in greater
detail, an experiment to measure impact signals was
conducted for different impact conditions. The structure
used for the experiment was a large-sized steel plate (2m
(width) 2m (height) 0.01m (thickness)).

In the experiment, 8 accelerometers were positioned
at arbitrary points on the plate and impact excitation was
applied at 5 fixed points in order to examine the effects
of transmission properties and sensor position. All
accelerometers have a 55 kHz mounted resonance
frequency. Fig. 1(a) shows the positions of the
accelerometers and excitation points. For the excitation,
3 solid steel spheres with different masses, 112.7g, 45.8g,
and 9.4g, were used to assess the effects of impact mass.
Impact energy was adjusted by changing the height at
which the sphere was released among 5 points, as shown
in Fig.1(b).

First, the relation between the impact mass and the
APSD is examined. Fig. 2 compares APSD curves of
impact signals for different masses at the collision point.
The APSD curves show a pattern consisting of a broad
main peak (or lobe) in the low frequency range and other
minor peaks. As stated earlier, the APSD changes
considerably with the impact mass. The main peak
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Fig. 1. (a) Positions of Accelerometers (Acc. #) and Excitation Points (P #) on a Large-sized Plate (2m 2m 0.01m) and (b) the
Method to Impact a Solid Sphere Against the Plate with Different Impact Energy



345NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.43  NO.4  AUGUST 2011

SHIN et al., Mass Estimation of Impacting Objects against a Structure Using an Artificial Neural Network without Consideration of Background Noise

moves to lower frequency as the impact mass increases.
On a theoretical basis, the main peak is related to the
dominant frequency (fmain) that occurs when the sphere
collides against the plate and is determined by the contact
duration (Tcontact) given by Hertz’s theory as follows [10]:

where m is the mass of the sphere. In addition, the
bandwidth of the main peak becomes narrower when the
mass is heavier.

Second, APSD curves for different levels of impact
energy are compared in Fig. 3. For the same impact
mass, the overall patterns of the APSD are nearly the
same regardless of the energy levels. However, in some
cases, the main peak slightly shifts to a low frequency
when the impact energy is low, that is, the release height
is low. For example, the bandwidth of the main peak is
narrowed by about 6% in Figs. 3(a) and (b) when the
release height is decreased from 90° to 45° in Fig. 1(b).
This means that the object mass can be estimated to be

heavier than the actual mass when it collides against a
wall with low energy or velocity.

Next, Fig. 4 shows APSD curves for different impact
points. It is observed in these figures that there is no
appreciable change in the main peak with different impact
points. However, the positions and bandwidths of minor
peaks in the high frequency range vary slightly without
any specific tendency.

Finally, Fig. 5 compares the relation between the
measuring point and the APSD. The main peaks of the
APSD curves for different points have nearly the same
pattern. Strictly speaking, the main peak of the impact
signal measured from Acc.1, which was located nearest
to the impact point, P1, has a complex form. However,
its overall pattern is not substantially different from that
of the others in spite of the existence of small peaks.
Contrary to the main peak, the other minor peaks show
some difference in shape depending on their positions.

In summary, the APSD of the impact signals is
mainly influenced by the impact mass if the shape of the
impact object is fixed and possible coupling effects

Fig. 2. Comparisons of the Auto-power Spectrum Density (APSD) Curves Measured at (a) Acc. 1 and (b) Acc. 4 According to
Impact Mass when an Impact was Made at P1 on the Plate

Fig. 3. Comparisons of the Auto-power Spectrum Density (APSD) Curves Measured at Acc.4 According to the Impact Energy
when Impact Masses of (a) 112.7g, (b) 45.8g, and (c) 9.4g were Impacted at P4 on the Plate

(2)



between the structure and other medium are neglected. It
appears that the impact energy is another factor that
causes changes to the APSD. In addition, variation of the
impact point and the measuring points does not cause
appreciable changes in the main peak shape of the APSD
for the plates used in this comparison. For much larger
structures where the distance between two measuring points
or impact and measuring points is far, the effect of the
impact and measuring points may need to be considered
as a nuisance variable.

3. DESIGN OF ARTIFICIAL NEURAL NETWORK
MODEL

This study employs an ANN model to estimate the
mass of an impacting object. Among the deterministic
models for detecting and recognizing a specific signal
pattern, the ANN has been widely used for cases in which
the input-output relationship is strongly nonlinear [9, 10].
In general, the ANN has a strong theoretical background

and performs feature mapping, with high accuracy, from
input parameters in an ambiguous form to the expected
domains [13].

3.1 Feature Extraction
As in other estimation or recognition methods, the most

important task in the design of the ANN model is to extract
an optimal feature vector, that is, input parameters that
represent the characteristics of the objects under
consideration as accurately as possible. In this study, the
APSD of an impact signal generated when a loose part
collides against a wall or a structure is taken as a strong
candidate for the feature vector, since APSDs of impact
signals are remarkably different depending on the impact
mass, as shown in Chapter 2. Unfortunately, it is not
reasonable to use a whole set of raw APSDs as the feature
vector due to the large amount of data. Using a whole set
of raw APSDs will increase the complexity of the ANN
model and lead to deterioration of its estimation
performance. For this reason, a portion of the information
in the APSD such as the FR value [8] or four-band
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Fig. 4. Comparisons of Auto-power Spectrum Density (APSD) Curves Measured at Acc.4 According to the Impact Point on the
Plate when the Released Angle of Impact Masses of (a) 112.7g, (b) 45.8g, and (c) 9.4g was 90°

Fig. 5. Comparisons of Auto-power Spectrum Density (APSD) Curves According to the Measuring Point when the Released
Angle of Impact Masses of (a) 112.7g, (b) 45.8g, and (c) 9.4g was 90° and the Impact Point was P1 on the Plate



representative values [9] have been used for the mass
estimation of an impact object.

For finding a considerable feature vector representing
the difference between APSD curves, this study proposes
a process combining two methods: a smoothing technique
and the discrete cosine transform. The extraction process
is as follows. First, the APSD of an impact signal is
calculated. Usually, the APSD contains too many small
and narrow peak components, which cannot be easily
utilized as a basic pattern in the frequency domain. Second,
a rectangular smoothing technique [14] is applied to a
raw APSD to simplify its curve shape. This is the simplest
method to smoothen a curve. The smoothing was defined
as follows:

where Li is the i th level in the raw APSD, Si is the i th level
after smoothing, i runs from 3 to N-2, and N is the
number of total data. Fig. 6(a) compares the smoothed
APSD with the original APST. For better understanding,
the example signal is sampled at a sampling frequency

(fs), 102.4 kHz, and the following options are applied for
the APSD calculation: 1024 data in the FFT, , 66%
overlap, and a rectangular window.

In Fig. 3, when the impact energy is changed for a
fixed impact mass, the pattern of the APSD remains
unchanged while its absolute level changes. In addition,
the distance between the impact and measurement points
could also affect the absolute level of the APSD. In order
to obtain an optimal feature vector, it is necessary to extract
only the pattern as a function of frequency regardless of
the level difference. For this, the DCT is used in this study.
The DCT is closely related to the discrete Fourier transform
and is defined as follows [15]:
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Fig. 6. Comparisons Between/Among (a) Original and Smoothed Curves, (b) Three Curves Having the Same Pattern but Different
Levels and (c) Their DCT Coefficients, and (d) Reconstructed Curves by Inverse DCT with the First 14 Coefficients

(3)
(4.a)

(4.b)
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where yk is the k th DCT coefficient with k from 1 to N.
Fig. 6(b) shows that the three curves have identical
patterns but their levels are different. Fig. 6(c) compares
the DCT coefficients for the three curves in Fig. 6(b). All
coefficients except the first are the same. The first
coefficient is related to the absolute level, that is, the DC
offset. Fig. 6(d) shows the reconstructed curves by the
inverse DCT (iDCT) for the first 14 coefficients.

As shown in Fig. 6(d), the DCT has the advantage
that the original curve can be reconstructed with only a
few DCT coefficients. In order to determine how many
coefficients are suitable to reconstruct the original curve,
mean square errors (MSE) between the original and
reconstructed curves were calculated as a function of the
number of coefficients used for the reconstruction. It is
shown in Fig. 7 that the original and reconstructed curves
are quite similar when the number of coefficients used
for the reconstruction is more than only 13. Judging from
the above results, the DCT coefficients, excluding the first
one, can be used as a good feature vector that represents
the pattern of the APSD curve. Fig. 8 illustrates how to
extract the DCT based feature vector.

3.2 Structure of the ANN Model
In this study, an ANN model is designed with a feed

forward network using error back-propagation training.
The ANN model consists of 1 hidden and 1 output layer.
Log-sigmoid and linear transfer functions are used for
the neurons of the hidden and output layer, respectively.
As shown in Fig. 9, this structure is the most basic and
simplest for the ANN.

To deal with the mass estimation problem as a
supervised problem, the output is the mass of an impact
object, and the number of neurons in the output layer is
then one. It is important to decide the number of hidden
neurons in the design of the ANN model. If too many
hidden neurons are taken, overestimation may occur;
conversely, if the number of hidden neurons is not high
enough, it is difficult to obtain expected performance.
For this reason, in theory, the recommended number of
hidden neurons (nH) is determined as follows [11]:

Fig.8. Flowchart Representing how to Extract the DCT Based Feature Vector for Input of the ANN Model

Fig.7. (a) MSE between Original and Reconstructed Curves as a Function of the Number of Used Coefficients for the
Reconstruction and (b) Comparison between Original and Reconstructed Curves

(5)



where nI is the number of input parameters, NI the number
of total input data, and nO the number of output neurons.
Unfortunately, this formula can only be used as a reference,
because the number of hidden neurons is strongly dependent
on the complexity of the problem. In this study, the final
decision on the number of hidden neurons is made by trial
and error based on the mean square error between real and
estimated masses for training and test data for the ANN
model and the recommended number.

4. APPLICATIONS: MASS ESTIMATION

4.1 For a Large-Sized Steel Plate
Mass estimation using the ANN model is applied to a

large-sized steel plate (2m 2m 0.01m). To obtain
training data for the ANN model, 8 solid spheres with
different masses, 112.7g, 67.7g, 36.9g, 24.7g, 17.7g, 9.3g,
6.5g, and 3.1g, are collided against the plate. The impact
energy is adjusted by releasing the ball at 5 different
heights. The positions of the accelerometer and excitation
are shown in Fig. 1(a). For the test data for the ANN
model, 10 solid spheres are collided against the plate at
arbitrary points with arbitrary energy. As a result, for
each accelerometer, 200 impact signals for the training
and 120 impact signals for the test are obtained and their
DCT coefficients are calculated.

With the training data, the ANN model for each
accelerometer is designed; that is, 8 ANN models are
constructed. The effects of two nuisance variables, the
transmission property of the structure and the position of
sensor, on the shape of the APSD can e neglected, as the
information is already included in the acceleration signals.
Mass is estimated with each signal from every measure
point by using the designed ANN models. The masses are

then averaged to obtain a representative mass, which is the
final output of the mass estimation using the ANN model.

In order to investigate the mass estimation performance
according to the number of input parameters, the results
obtained using 8, 13, and 20 DCT coefficients as inputs
are compared. As already noted above, the first DCT
coefficient related to the overall level is eliminated from
the input parameter. From Fig. 7(b), it is seen that the
reconstructed curve with 9 DCT coefficients is remarkably
different from those with 14 and 21 DCT coefficients.
Fig. 7(a) shows the quantitative differences; owing to these
differences, three different numbers of DCT coefficients
are chosen for comparison of estimation performance.

Fig. 10 shows the distribution of the estimated mass
for training and test data used for the design of the ANN
model. As shown in Figs. 10(a) and 10(b), the case using
8 DCT coefficients as input has relatively large deviations
from the actual mass (the straight line). The deviations
are especially dominant for the heavy mass, 112.7g. On
the contrary, it is seen that the two other cases have quite
similar estimation performances with each other in spite
of the difference in the number of inputs of the ANN model.

In order to assess the extent of the deviation from the
identical line in greater detail, relative errors between the
actual and estimated masses in the test data is calculated.
The relative error (Erel) was defined as follows:

Here, m is the estimated mass, M the actual mass, and N
the number of estimations. Fig. 11 compares the relative
error as a function of the actual mass for different numbers
of DCT coefficients used as input.

The case using 13 DCT coefficients has relative
errors below 30% for all masses except the two lightest
masses: 4.6g and 6.5g. For these masses, all ANN
models yielded large relative errors of more than 100%.
It is speculated that these errors are due to the light
masses not sufficiently exciting the large-sized plate. In
addition, the case using 20 DCT coefficients does not
show substantial improvement in terms of the relative
error compared to the case using 13 DCT coefficients.
For some masses, the former case shows higher relative
errors than the latter case. This means that 13 DCT
coefficients are sufficient to represent the features of the
APSD from the large sized plate and too many input
parameters increase the complexity of the design of the
ANN model. In the case of using 13 DCT coefficients as
an input, the number of hidden neurons is about 14
depending on the ANN model.

To compare the performance of mass estimation by
the ANN model, the FR method, one of the conventional
methods for the mass estimation of loose parts, is also
applied for an identical set of impact signals as used with
the ANN model. For calculation of the FR value, low
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Fig. 9. ANN Structure Used for Estimating an Impact Mass in
this Study

(6)



frequency components between 2 kHz and 10 kHz were
chosen, since the first local peak appears in this frequency
range, as shown in Fig.2, and high frequency components
between 10 kHz and 40 kHz were chosen. As shown in

Fig. 12, the FR values widely overlapped for the different
masses compared with the masses estimated by the ANN
model. It is difficult to see the difference between FR
values for the masses of 67.7 g and 112.7g. Judging from
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Fig. 12. FR Values of Impact Signals Used as Training and
Test Data for the Design of ANN Model for the Plate

Fig.11. Comparison of the Relative Errors between Estimated
and Real Masses for the Test Data Used for the Design of the
ANN Model for the Plate as a Function of Real mass According

to the Number of DCT Coefficients Used as Input Data 

Fig.10.Comparisons between the Results of Mass Estimation by ANN Models with the Different Number of Input Parameters for
the Plate: (a) Training and (b) Test Data with 8 DCT Coefficients, (c) Training and (d) Test Data with 13 DCT Coefficients, (e)

Training and (f) Test Data with 20 DCT Coefficients. In the Figures, the Bar Indicates the Standard Deviation of Estimated Values
for Each Mass and the Dashed Line is Points where Real and Estimated Masses are Identical with Each Other



this comparison, the ANN model provides better mass
estimation performance than the FR method.

4.2 For a 1/8-Scaled Mock-up
Mass estimation using the ANN model is also applied

to a 1/8-scaled mock-up of a reactor pressure vessel (Fig.
13(a)). To obtain training data for the ANN model, 8 solid
spheres with masses of 112.7g, 68.9g, 36.9g, 29.1g, 24.7g,
17.7g, 9.4g, and 4.6g are used. They are shot at 5 different
points on the mock-up with 5 different energies for each
sphere. 8 accelerometers are positioned on the surface of
the bottom part of the mock-up, as shown in Fig. 13(b).
The positions of 3 accelerometers are identical with the
positions of sensors for loose part monitoring of the reactor
pressure vessel after considering the reduced scale. The
other accelerometers are arbitrarily located. To collect

test data for the ANN model, 11 solid spheres are shot at
arbitrary points with arbitrary energy. As a result, for
each accelerometer, 200 impact signals for the training
and 99 for the test were obtained and DCT coefficients
were calculated.

First, Fig. 14 shows the effects of impact mass and
energy on the APSD of the impact signal. As in the results
for the plate, the variation of mass considerably affects
the change in the pattern of the APSD curves. It appears
that the energy difference also contributes somewhat to
the pattern change. Second, the number of coefficients
needed to reconstruct the pattern for the mock-up model
is examined. Fig. 15(a) presents the results for the MSE
between the original and reconstructed curves as a function
of the number of coefficients used in the ANN model. It
is shown that the use of more than 13 DCT coefficients
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Fig.13. (a) 1/8-Scaled Mock-Up of a Reactor Pressure Vessel and (b) the Positions of 8 Accelerometers

Fig.14. Comparisons of the Auto-power Spectrum Density (APSD) Curves According to (a) Impact Mass and (b) Impact Energy
for the Mock-Up. In Fig. 14(b), Ascending Order of Energy: E1, E2, E3, E4, and E5



including the first one can reconstruct the original APSD
with high accuracy. Fig. 15(b) compares the original curve
to reconstructed curves with different numbers of DCT
coefficients.

For the mock-up, ANN models are constructed for each
allocated accelerometer. The representative estimated

mass is an average value of individual estimated masses
obtained from the corresponding ANN models. In Fig.
15(a), 9 DCT coefficients are not enough to sufficiently
represent the pattern of the APSD. Hence, the ANN models
using 8 DCT coefficients excluding the first one as an
input cannot correctly estimate the impact masses, as shown
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Fig. 16. Comparisons between the Results of Mass Estimation by ANN Models with Different Numbers of Input Parameters for
the Mock-up: (a) Training and (b) Test Data with 8 DCT Coefficients, (c) Training and (d) Test Data with 13 DCT Coefficients. In
the Figures, the Bar Indicates the Standard Deviation of Estimated Values for Each Mass and the Dashed Line is Points where the

Real and Estimated Masses are Identical with Each Other

Fig.15. For the Mock-up, (a) MSE between Original and Reconstructed Curves as a Function of the Number of Coefficients Used
for the Reconstruction and (b) Comparison between Original and Reconstructed Curves



in Figs. 16(a) and 16(b). In particular, for light masses, the
deviation errors are large and it is difficult to distinguish
between different masses due to the large overlap on the
error bars. Moreover, the ranges of estimation for two
relatively heavy masses, 68.9g and 112.7g, partially
overlapped each other. However, when 13 DCT coefficients
excluding the first one are used for the ANN model, the
estimation performance is remarkably improved. As shown
in Figs. 16(c) and 16 (d), although the estimated values
for a few masses overlapped, standard deviations for the
estimated masses are much smaller than in the case of
using only 8 DCT coefficients and the error ranges of the
estimated masses are also much smaller. Fig. 17 shows
that there is no appreciable improvement in the estimation
performance when 25 DCT coefficients are used in
comparison with the case of using 13 DCT coefficients.
It can be concluded that 13 DCT coefficients are sufficient

to represent the pattern of the APSD in this case. When
13 DCT coefficients are used as an input, the number of
hidden neurons is about 16, while it depends on the
specific ANN model.

FR values on impact signals used for the design of
the ANN model are also calculated in the same frequency
ranges as in section 4.1 and the results are shown in Fig.
18. For each FR value, the range of corresponding mass
is too wide and hence discrimination between two masses
is practically impossible in comparison with mass
estimation by the ANN model.

5. CONCLUSION

This study proposes a method using an ANN model
to estimate the mass of a foreign object impacting a
large-sized structure. Given the observation that the
APSD of an impact signal is strongly affected by the
mass of the impacting object, the pattern of the APSD is
considered an important factor for the mass estimation.
To quantitatively represent the pattern of the APSD
curve, the DCT is introduced. Since the original curve
can be reconstructed from only a few DCT coefficients,
it is possible to precisely extract the features of the
APSD curve and also decrease the number of input
parameters for the ANN model. In addition, it is possible
to represent the pattern of the APSD curves regardless of
the difference in the absolute level by excluding the first
DCT coefficient.

The proposed method using the ANN model is applied
to two structures: a large-sized plate and a 1/8-scaled
mock-up of a reactor pressure vessel. As a whole, for all
masses except for the light masses below 10g, relative
errors between the real and estimated masses are below
30%. Through comparison with the FR method it is
shown that the proposed method improves the estimation
performance. Moreover, the ANN model make it possible
to directly obtain an estimated mass without any mapping
between different domains, such as mapping the FR value
to the mass domain. In addition, the method is free from
the effects of the transmission properties of the structure
and the sensor position.

While the proposed method is developed for mass
estimation, when the difference between two masses is
below a certain limit, the distribution ranges of estimated
masses overlap extensively. A possible reason for this is
that the APSD is only slightly changed even when the
impact energy is varied. The current results were obtained
under conditions without background noise. In order to
improve the estimation performance of the proposed
method and apply it to real field conditions in future works,
it will be necessary to deal with several different in-field
conditions: the characteristics of background noise, the
effect of impact energy, coupling between the wall (solid)
and internal fluid, and the shape of the loose part.
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Fig. 18. FR Values of Impact Signals Used as Training and
Test Data for the Design of the ANN Model for the Mock-up 

Fig.17. Comparison of Relative Errors between Estimated and
Real Mass for the Test Data Used for the Design of the ANN

Model for the Mock-up as a Function of Real Mass According
to the Number of DCT Coefficients Used as Input Data
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