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The backward differentiation formula (BDF) method is applied to a three-dimensional reactor kinetics calculation for
efficient yet accurate transient analysis with adaptive time step control. The coarse mesh finite difference (CMFD) formulation
is used for an efficient implementation of the BDF method that does not require excessive memory to store old information
from previous time steps. An iterative scheme to update the nodal coupling coefficients through higher order local nodal
solutions is established in order to make it possible to store only node average fluxes of the previous five time points. An
adaptive time step control method is derived using two order solutions, the fifth and the fourth order BDF solutions, which
provide an estimate of the solution error at the current time point. The performance of the BDF- and CMFD-based spatial
kinetics calculation and the adaptive time step control scheme is examined with the NEACRP control rod ejection and rod
withdrawal benchmark problems. The accuracy is first assessed by comparing the BDF-based results with those of the Crank-
Nicholson method with an exponential transform. The effectiveness of the adaptive time step control is then assessed in
terms of the possible computing time reduction in producing sufficiently accurate solutions that meet the desired solution

fidelity.
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1. INTRODUCTION

Development of an efficient nuclear reactor transient
analysis module that provides high performance and
accuracy is one of the most important issues in computational
reactor physics. As far as the temporal solution scheme is
concerned, a higher order method that allows larger time
step sizes for the required solution fidelity should be the
first element of an efficient transient analysis module.
Another would be an adaptive time step control scheme
that dynamically adjusts time step sizes according to the
characteristics of the transient.

Among the numerous temporal schemes for solving
the time-dependent three-dimensional (3-D) diffusion
equation, the Crank-Nicholson method with an exponential
transform' is considered as a quite accurate higher order
method and is widely used. This method is particularly
effective for the transients involving an exponentially rising
period such as the one encountered during a control rod
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ejection accident initiated at a hot-zero-power (HZP)
condition. However, an adaptive step size control scheme
is not derivable with this method, and thus a predefined
set of time step sizes has to be specified by the user. With
the ordinary Crank-Nicholson method, adaptive time step
control is possible using the error estimates obtained
from two different time step size trial runs’. However it is
only second-order accurate. On the other hand, multistep
methods, such as the Runge-Kutta methods, render higher
accuracy as well as a provision for adaptive step size
control’. They are not, however, practical in realistic
transient calculations involving thermal-hydraulic
feedback because they require multiple evaluations of
solution parameters within a time step. As an effort to
accomplish the two goals of higher order accuracy and
adaptive time step control, the backward differentiation
formula (BDF) method* is investigated here for applications
to 3-D kinetics calculations with thermal feedback.

The BDF method is an implicit multipoint method
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that uses known solution data determined at several
previous time points as well as the unknown solution at
the current point. The order of the error term can be easily
adjusted by choosing a different number of previous data
points. This method is known to provide good solution
stability in solving stiff differential equations for which
an implicit solution is essential’. Since the time-dependent
multigroup neutron diffusion equation is a stiff differential
equation® because of the short neutron generation time
and an implicit solution is essential due to the negative
thermal effect, the BDF method would be well suited for
the solution of spatial reactor kinetics problems. Another
distinct advantage of this method is that the information
about the order of the error can be used to estimate the
error at the current time point. Thus, this method can
provide a convenient means of error quantification that
can be used in the determination of a proper step size.
There was an earlier study by Ginestar et al.” about
the application of the BDF method to the solution of the
time-dependent neutron diffusion equation. In that study,
the BDF formulation was applied to the ordinary differential
equation for flux, which is obtained after spatial discretization
of the time-dependent neutron diffusion equation. The
precursor balance equation was excluded from the BDF
solution process by employing the analytic precursor
integration procedure. Their BDF solution was based on
a fixed time step size. They introduced the so-called variable
step scheme that changes selectively the order of BDF -
out of 1, 2 and 4 — on the fly depending on the extent of
change. Compared to a variable time step scheme, however,
this variable step (or order) scheme would be much less
flexible and efficient. Another application of the BDF
method to spatial kinetics calculations was made using a
public domain ordinary differential equation solver. Garcia
et al.® applied the FCVODE solver, the FORTRAN version
of the CVODE solver’, which has a generic BDF solver
capable of adaptive time step control. To meet the preset
requirements of the generic solver, the finite difference
method was used for spatial discretization. Since a nodal
method has to be used for efficient reactor calculation
and the nonlinear thermal-hydraulic feedback effect must
be included in a realistic reactor core calculation, such a
generic ODE solver that would require preset forms of
the equation and coefficients is not well suited for an
efficient and realistic reactor kinetics calculation. Rather,
it is better that a reactor code specific BDF method is

I |

established with the capability of adaptive time step
control.

In this regard, the first objective of the work here is to
devise an efficient implementation of the method BDF in
spatial kinetics calculation and then to evaluate its
performance. The second objective is to establish and
assess a BDF-based adaptive time step control scheme.
In the following section, a backward differentiation
formula is derived for the variable time step case and a
generic adaptive time step control method based on the
BDF method is presented. The BDF method is applied in
Section 3 to three-dimensional kinetics calculation
employing the coarse mesh finite difference (CMFD)
formulation with the source expansion nodal method
(SENM) kernels' and a practical adaptive time control
scheme for the BDF-based spatial kinetics calculation is
introduced. The performances of the BDF spatial kinetics
calculation and the adaptive time step control scheme are
assessed in Section 4 through the analyses of the NEACRP
control rod ejection' and withdrawal'?> benchmark problems.
Section 5 concludes the paper.

2. ADAPTIVE TIME STEP CONTROL USING
BACKWARD DIFFERENTIATION FORMULA

The backward differentiation formula for the constant
time step case can be readily derived and appears in
numerous textbooks on numerical solution of ordinary
differential equations. However, special attention is needed
when time step size is variable. This is essential in adaptive
time step control. In the following subsection, a BDF is
derived with variable time step sizes and a BDF-based
method of adaptive time step control is formulated.

2.1 BDF with Variable Time Step Sizes

The n™ order BDF is expressed as the derivative of a
time-dependent function f(t) at the current time point, at
which the solution is newly obtained, in terms of the n
previously known values and the unknown current solution.
An n™ order polynomial interpolation can be used for
determining a BDF. Suppose that the current Time Point
(TP) index is i and the solution has been obtained up to
TP i-1. Refer to Fig. 1 for the definition of time points,
step sizes and the indices of n steps.

| |
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Fig. 1. Time Points and Steps Sizes

532

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.43 NO.6 DECEMBER 2011



SHIM et al., Application of Backward Differentiation Formula to Spatial Reactor Kinetics Calculation with Adaptive Time Step Control

Let the n™ order Lagrange interpolation function of
f(t) be represented by pn(t) defined below:

PO=Y L0 @
where
nf t-t
L,(1) =g{—nk —ry ] @

The derivative of pa(t) at t; is obtained as follows:
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Thus the BDF is given as
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where the BDF coefficients, as’s, are
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Note that it is natural that this formula can be applied to
the problem of a constant step size as well.

2.2 Time Step Size Control with BDF

The step size control method determines the current
step size using the estimate of the error at the end of the
current time step. When the estimated error is larger than
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the required value, the step size is reduced and vice versa.
Although there are some sophisticated step size control
methods available for BDF”", those methods may not
necessarily be the best in spatial kinetics calculations in
which the nonlinearity originating from thermal feedback
and local nodal solutions can be readily resolved. For
instance, in the CVODE solver of the SUNDIALS package’,
the Newton iteration scheme is employed to resolve the
nonlinearity originating from the implicit BDF formulation.
The Newton iterative solutions are used as the predictor
and the corrector solutions needed for determining local
truncation errors. In addition, the order of the BDF is
allowed to vary in order to maximize the allowable time
step size. Furthermore, several heuristically determined
control parameters, such as the safety factor of 1/6, the
maximum step size reduction factor of 0.2 to be applied
after two error test failures, and the minimum step size
reduction factor 0.1 to be applied after three error test
failures, are used. Since the Newton iteration is not
necessary in the CMFD-based spatial kinetics calculation
scheme used in this work, the local error estimation scheme
using the Newton iterates and the associated variable order
BDF scheme would not be beneficial here. Moreover, the
heuristically determined control parameters of a generic
adaptive step control scheme are not necessarily optimal
in spatial kinetics calculations. In this regard, a simpler
and potentially more efficient step size control method is
derived below. The starting point of the derivation is to
note that the local truncation error of the n® order BDF
solution at the current time point can be estimated after
performing an additional BDF calculation with the order
of n-1.

2.2.1 Basic Idea of Step Size Control

Given the desired error tolerance ¢, the required time
step size can be determined for an n™ order method as
follows:

1
B =sh = [i] % ©)

where

hi = time step size at the i" step,

S = step size adjustment factor at the i point,

ei =relative error of the solution vector at the i"

point obtained with h;, and

hi = trial value of h;.
Note that the solution appears as a vector in general because
a system of ordinary differential equations is solved in
most cases including the spatial kinetics problem. Here
the concern is now how to estimate the relative error of the
solution vector. In the following, the derivation is, however,
given as if the unknown function is a single scalar function,
but it is meant that the notation for a function appearing
below represents a vector of functions.

Consider the solution of the following equation at TP
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i supposing that the correct solution is available at TP i-1:

YO =ft.y)  (yt)=y.). @)

The error at the i point obtained with an n™ order method
is designated by

¢ (h)=y" -y, )
where y; is the true solution and Y™ is the estimated solution

obtained by the n™ order method. This local error is
dependent on the time step size h to the n+1™, namely,

e () =g (@), ©

where g"(t) is the value of the n+1", order derivative
of the solution, y = g(t), at a point 7 satisfying ti., < B <ti.
For the n+1™ order method, the error is represented as

e () =y -y, =g (%) (10)

with another % located within the time step. Using Eq.
(20), the error in Eq. (8) can be rewritten as

e (h)y=y" =y P+ hg" (&) =h"g" (). (11)

From this equation, it follows that the difference between
the two different order solutions is of order n as

yi(n) —y,F’H) — —hng(")(fi)'i' hn+1g(n+l)(l_i) — O(hn) ) (12)

From the relation of Eqs. (11) and (12), it seems
reasonable to take the above difference as an approximation
of the error of the N order solution. Namely,

ei(n)(h) ~ y;n) _y;n—l) — C(Tl»)h" (13)

for some constant C(7). This estimate of the true error
would be conservative in that the length of the approximate
solution vector would be larger than the true one because
the difference consists of only a part of the error. With
this larger error, the next time step size will be estimated
to be smaller and conservative.

Noting that the order of the local error is reduced to n
from n+1 by using this approximated error, the following
relation is expected with a changed step by a factor o :

e (ah)= y " (t,  +ah)—y" Ot +ah)=a"h"C(%,) . (14)

In order to have the relative error smaller than the desired
tolerance with the adjusted step size, the following
relation should hold:

a”(ah)  a|CE)|
B “Tum =€
| +ah)| @ +an)
By ignoring the difference between C(7) and C(%) for the
a values moderately deviating from unity and using Eq.

(13), the following relation for the adjustment factor is
derived:

(15
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Since y"(t.1+oh) =y,™, Eq. (16) can be rewritten as

ag{ij” )
e.
with the relative error defined by

i -] (18

e =
(n)
‘yi

2.2.2 Considerations for Stable Step Size Control

There are many assumptions in the above derivation
of the step size control method. It implies that the actual
relative error can be larger than the given tolerance and a
blind application of the above scheme can induce too
frequent and alternating changes in the time step size. In
this regard, some considerations for stabilization and
assurance need to be made in the step size control scheme.

First of all, a safety factor is introduced to make the
estimated relative error bigger. In general, this factor
ranges from 0.8 to 0.9 and the relative error is divided by
it to make it larger. After applying this safety factor, 6,
the formula of the step size control method is expressed
as

e

i

1
hi = Sihi, - [@]” hi, ’ (19)

This safety factor is set to 0.8 in this work.

In general, it is not good to increase the time step size
whenever the step size adjustment factor S; is greater than
1.0 because it may be less than in the next step because
of the current increase. It is thus better to monitor the
error trends for several time steps even though it appears
to be adequate to increase the current time step. The
number of error monitoring steps, a parameter M, is
introduced here and it is adjusted depending on the history
of time step change. The initial value of M is chosen to
be 5 in order to be consistent with the 5™ order BDF
method, which will be used here. It can be reduced if a
monotonous change lasts several time steps and is reset
to 5 once the time step size decreases. The detailed
algorithm of adjusting M will be discussed along with
Fig. 2.

On the other hand, it is desirable to avoid a sudden
large increase in the step size. This means that it is better
to limit possible increases. The maximum increase factor
B is thus introduced to prevent excessively large increases
as follows:

(Bhi’
hi = ’
sk

The value of B is set as 1.25 initially, but it can be

(s, > B) ]
. (20)

(B>s,>1.0)
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increased to 1.5 first and then further to 2.0 when the step
size adjustment factor is larger than the conservative factor
B during M time steps.

During the course of adaptive time step control, the
most significant problem occurs when the estimated relative
error is larger than the specified relative error tolerance
which means the current time step size is too large to meet
the required error criterion. In this case, the solution must
be obtained again with a smaller time step size. Since neither
too large nor too small reduction is desirable, a fixed
reduction of 20% is used in this work as follows:

h=08K ife >e. (21)

With this algorithm as explained so far, the time step
size can increase continuously if there is no perturbation
which induces a large error. Sometimes, the increase is
good because it saves the computing time greatly, but it
can cause a serious problem when a sudden perturbation
occurs after a long stable period. An example is reactor
shutdown during a smooth power increasing period. To
prevent this problem, the time step size is restricted not
to exceed a preset maximum value hpax of which the
default value is 1.0 sec. The step size control scheme
described above is depicted in Fig. 2.

3. SPATIAL KINETICS SOLUTION USING BDF AND
CMFD METHODS

The BDF method can be conveniently implemented
in the CMFD formulation of the time-dependent neutron
diffusion equation. In the following, time-dependent

|

Set Parameters ‘
(M=5, B=b(1), iter=0)

v

Obtain the i" step solutions |

CMFD formulation is derived with the temporal
differencing performed by the BDF method. The actual
adaptive time step control scheme implementing the
algorithm of Fig. 2 in the spatial kinetics calculation
involving thermal feedback is then presented.

3.1 Discretization of Time-Dependent Multigroup
Neutron Diffusion Equation

The time-dependent multigroup neutron diffusion
equation can be written as follows in terms of the volume
averaged flux for Node m and precursor density together
with the precursor balance equation:

1 dg;' (1)
— v . — 22
— xg(léﬂm(r))wmm ) )
LD AVRACEIIPIACTMO
—{ 2 G 0= o)+ T, (0] (r)j
dcy (1)

(€S)

=By, O-4C (1) (k=1-6),

dt

where the symbol 1 denotes the fission source and & is

the inverse of the node width in u-direction. Using the

CMFD relation for the interface current’, the current

terms J in the loss term of Eq. (22) is expressed as

= Ju =—(Do - Dy )4, ~( D+ D) g -
+(15'”+ + D - Dy +ﬁ;’jf)¢:_

gu gu

with the n, n-1" BDF method |

if B=b(1) then B=b(2)
if B=b(2) then B=b(3)

if B=b(3) & M>1
then M=M-1
@ —Nox{ Next step
Y
Yes

No
(h=0.8h )eYes- —No

*h=[1.25 1.5 2.0].

Fig. 2. Stabilized Step Size Control Algorithm
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Dy are Dyy° the base nodal coupling and corrective
nodal coupling coefficients (CNCC), respectively, defined
at the positive(+) or negative(—) side surface in the u
direction of node m.

After substituting Eq. (24) into Eq. (22), Egs. (22)
and (23) are expressed in terms of matrices and vectors
as

1 dg, (1)
dt

=5,(-L,(00,(0) (29)

4

dC;t(t) B -AC,() (k=1-6), (26)

with M now being the number of total nodes,
0, () =[g (1), 8, (O] eR™,
s, (1) =[sy(0), -5 (D] e R™,

C,(O=[C,®), . C' O eR™,

Bw() =[O, (1), B (), (O] € R™,

i M .M
Lg: e R,
lm
_ m m m m
L, =, =10 =00 e =10
m m m .M
_ung“‘)—ugy".'5—ugzj“‘]ER o

sy (0 =x,(1-B8,0)y,.(0)
+Zldgk/1kcf O+ X T (07 0),

g'=l#g

lm =

m [ Fym- A m—
gu u (Dgu _D )’

gu
uy, = ¢ (D + Dy, and
dy =¢ Dy + Dy - Dy + D )+
By applying the BDF to the LHS derivative of Eq.

(25) at the i™ time point, the following discretized
equation is obtained:

1 n
(Z ak(pg,i—k j = Sg.i - Lg.r'(pg,i . (27)
Vg k=0

Note that the BDF coefficients, a;, has the dimension of
inverse time because the time step sizes appear in the
denominator as indicated in Eq. (5). Now, by collecting
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known and unknown terms, the CMFD linear system to
be solved appears as

a 1 n
(Lg,i +V_Olj(pg,i =S _v_(zakq)g,ikj (28
o Ul

g

The term Sy, in Eq. (28) contains 6 precursor density
terms Ci (k=1,...,6), which are also unknowns. These
precursor densities can be treated as explicit unknowns
by solving the precursor equation simultaneously with
the flux equation after applying the BDF temporal
differencing to the precursor equation as well. This
simultaneous solution scheme would yield a large linear
system in which the number of unknowns per node is
eight instead of two for a two-group problem. The solution
of the linear system thus can be inefficient. This inefficiency
can be avoided by noting that the precursor density changes
much more slowly than the flux due to the nature of delayed
neutron emission, and thus the same order temporal
discretization need not be applied to both the flux and the
precursor equation. A simpler approach is to use the analytic
solution of the precursor equation, which can be obtained
once a proper form of the temporal variation of the fission
source within the current time step is assumed. If a quadratic
variation of the fission source is assumed for the current
time step, the precursor density at the current time point
can be expressed in terms of the unknown fission source at
the current time point and the known fission sources of
the two previous time points through the analytic integration
procedure. The specific expression is given as follows':

k

m m ﬂ
Cei =8 Ci +7<Qk,i—2w;11,i—2 (29)
d + Qk.i*ly/m,[fl + Qk,il//m,i ) .

The details of the coefficients can be found in the
PARCS code theory manual'. This approach of analytic
precursor integration was also used in the work of Ginestar
et al., but they used only first order fission source variation.
The adequacy of the second order precursor integration
as opposed to the first order integration and to the direct
BDF precursor solution approach will be examined in
Section 4.1.

After substituting Eq. (29) into the precursor terms of
Sgiin Eq. (28), the total delayed neutron source and total
source at node m, group ¢, and time point i are expressed
as follows:

6
m _ . m
z ldgk/lk Ck,i - sdg,[fl + a)g,[l//m,i . (30)
k=1

The total source at the current time step is then represented
as
S;n,i =X (1 - ﬁm,i )l//m,i + 5:1;,['4 =
+ wg,i!//m,i + z zg'g,iégz,i (31)

g'=l2g g
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where

6
m _ m
Sdgi-1 = Zngk (Kkj’kck,i—l
k=1
+ ﬁk (Qk,FZ(//m,ifZ + Qk,i*l'//m,ifl ))’

6
@y = Zldgkﬂkgk,n and
P

G
5= (2, (1- B )+ @ Wi+ X Zoe i,

g'=l2g

Finally, Eq. (28) is simplified as

[Lg,i +j_oqu)g,i _gg,i = sdg,ifl _%(Zakq)g,ik] . (32)
g g \ k=l

Due to the use of the BDF, RHS of Eq. (32) contains
the node average flux terms of the previous n points.
Note that it does not involve the term related to the nodal
imbalance term of the previous time point, namely, the
difference between the production and the loss rates of
the previous time point. This tracking of the imbalance
term is essential in the Crank-Nicholson method, and it
makes the method a little complicated to implement.
Because of the absence of the imbalance term, the BDF
method is in fact very easy to implement. Only the
additional storage required for the previous time point
node average flux values and the construction of the RHS
terms of Eq. (32) with the BDF coefficients are necessary.

On the other hand, the CNCC, D}, should be calculated
by a local higher order nodal calculation. In the construction
of the local higher order problem involving the transverse

integrated one-dimensional neutron diffusion equation, the
ak m
transient specific source term that includes the V_¢g,i—k term

8
appearing on the RHS of Eq. (32), is placed on the RHS
as a function of the intra-nodal position. If this intra-nodal
dependence is to be treated accurately, all coefficients of
the higher order nodal solution, which determines the
intra-nodal flux shape, should be stored and used. This
requirement would pose a significant problem in the case
of BDF because n previous fluxes are used on the RHS,
and thus that much more storage and operations are
required. In order to avoid this problem, a practical iterative
solution approach is introduced here. This scheme moves

a m
the v_0¢g,i term of the LHS to the RHS and uses the previous

iterative value obtained at the current time point so that
the transient specific source term becomes

m. 1 m,j B m
Sg,;'TS = __[ao g,;’j + Z ak¢g,i7k j s (33)
Ve k=1
where j is the index of the nodal calculation to update the
CNCC. Note that this term is in fact the BDF form of

1 dg,

—7° which is small due to the large v values. A similar
v, dt |

rl
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idea of this difference formulation can be found with more
details in the transient CMFD formulation for the Crank-
Nicholson method with exponential transform given
elsewhere'. The transient specific source terms of Eq. (33)
given by the difference is small in size and thus the impact
of the less accurate intra-nodal shape is not great. With
this rationale, the transient fixed term is now added to the
transverse leakage source term and is represented as a
simple quadratic polynomial as in the standard nodal
methods. The higher solution for the one-dimensional
equation is obtained by the source expansion nodal method
(SENM)’, which represents the source term, including
the fission source term, as a quartic order polynomial that
leads to the exponential functions in the homogeneous
part of the solution.

The CMFD- and BDF-based transient calculation
method was implemented in the RENUS multigroup nodal
code’, which has a simplified closed channel thermal-
hydraulics calculation module that determines the intrapellet
fuel temperature distribution for assembly averaged fuel
pins. This code performs iterative estimation of the fuel
temperature distribution at the current time point to
incorporate prompt reactivity feedback due to fuel
temperature change. The multiple calculations of the fuel
temperature profiles are performed to be properly
coordinated with the nodal calculations to update the
CNCCs in the CMFD calculation with thermal feedback.
The following algorithm is used at each transient calculation
step of the RENUS code for a given time step size:

1) Determine the new fuel temperature distribution at
the current time point using the power distribution
of the previous time point.

2) Update the macroscopic cross sections of each node
incorporating external perturbations, such as control
rod movement and thermal feedback.

3) Determine the source terms on the RHS of the CMFD
linear system, Eq. (32), including the BDF terms,
fission and delayed neutron source terms originating
from the previous steps.

4) Set up the LHS matrix of the CMFD linear system
using the temperature dependent cross sections and
the CNCC so far known at each nodal interface.

5) Obtain a partially converged solution of the CMFD
problem.

6) Perform the SENM nodal calculation to update the
CNCCs only if there is a need for nodal update due
to sufficiently large cross section changes occurring
at this step.

7) Perform the fuel temperature calculation with the
updated power distribution.

8) Update the nodal cross sections.

9) Return to Step 4 if the flux convergence is not met.
Otherwise proceed to the next step.
10) Determine the core power level and relative power

distribution.
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11) Perform a full T/H calculation to update the coolant
temperature profile.

12) Update the precursor number density distribution.
13) Proceed to the next time step.

Note that Step 6 above realizes the so-called conditional
nodal update scheme, which performs the nodal calculation
to update the CNCC only when there are sufficient changes
in the cross sections since the last update. This scheme
allows fast transient calculations by effectively skipping
expensive nodal calculations. The accuracy and efficiency
of this scheme has been well verified elsewhere'.

3.2 Step Size Control Algorithm

For step size control by the scheme presented in
Section 2.2, the solution at the current time needs to be
obtained two times: first with the n order BDF coefficients
and then with the n-1" order. Since the time advancement
to the next time step is allowed only when the estimated
solution error is less than the specified value, Steps 10
through 13 in the above algorithm should be reserved
during the step size determination process. Once the
calculation for the current time step is initiated with an
estimated step size, the first calculation with the n™ order
can thus proceed to Step 10 and the second calculation
needs to be started from Step 3 because the BDF
coefficients change while the time step size remains the
same. In the second calculation with the n-1" order, any
variable updated during Steps 3 through 10 should be reset
to the beginning of the time step value so that the second
calculation can be performed at the same condition as the
first one. Once the two solutions are obtained at Step 10,
the error of the n™ order solution needs to be estimated as
explained in the following.

In a three-dimensional multi-group kinetics problem,
the primary solution is the flux vector consisting of
nodewise multi-group fluxes. However, a more meaningful
solution is the nodewise fission source, which includes
the fission cross sections because it reflects the power
generation rate. In addition, the dimension of the fission
source vector is much smaller than the flux vector because
there is no energy group dependency. For these two reasons,
the fission source vector is taken as the solution and the
L. norm of the difference of the two fission source vectors
obtained with the n® and n-1"™ BDF schemes is used as
the global error estimator in this work.

The relative error to be used in Eq. (18) is defined as

\/i( (n ( |>)2
el 7

m=1

o

=1

e,.=

S

(34)

3

where 1 is taken as the fission source vector of the initial
steady state if the initial core power is larger than 1%.
Otherwise it is a null vector. This measure is needed to

538

define the error relative to the increment from the steady-
state values when the initial core power is substantial
while the increase is marginal. The control rod ejection
from hot-full-power (HFP) conditions is a good example
of these cases.

If the step size adjustment factor determined by Egs.
(19) and (34) is less than unity, the step size should be
reduced and the calculation must be restarted from Step 1
of the previous algorithm with a reduced time step size.
The detailed calculation algorithm with the CMFD
calculation with step size control is given in Fig. 3.

In this figure, the shaded and hashed blocks are
relevant to the BDF method and step size control. If the
step size control is not turned on, the hashed blocks are
skipped. In principle, the nodal and T/H calculations are
also needed to be performed for the n-1" order calculation.
Note, however, that the CNCC and the fuel temperature
profiles for the n-1" order case are not very different
from those of the n order result, so these calculations are
skipped to save the computing time as identified by the
conditional “n=ny ?”” appearing in the middle of the first
column of blocks of Fig. 3. Here Ny is the order of BDF,
which is normally 5. At the second calculation of each
time step having a lower BDF order, namely, Ny -1, the
conditional is not satisfied and the right hand side branch
which does not involve the nodal and T/H calculation is
executed. On the other hand, during the initial 5 time steps,
the value of Ny increases linearly from 1 to 5 because
there are not enough previous points during those initial
steps.

4. PERFORMANCE EXAMINATION

As stated earlier, the Crank-Nicholson with exponential
transform (CNET) method renders quite accurate solutions
for most transients particularly for the cases involving an
exponential rising period. Since the newly introduced
BDF method should be as effective as the state-of-the art
method, its accuracy is first assessed against the CNET
method using the RENUS code, which has the CNET
option as well as the regular Crank-Nicholson (CN)
option. In this comparison, which will be shown in the
following subsection, the same set of predefined time
step sizes are used for both methods. The two important
transients of control rod ejection and uncontrolled
withdrawal are examined with the NEACRP benchmark
problem specification”®. Note that these benchmark
problems are used to demonstrate the transient capability
of industry standard codes such as ANCK'. A more
complete description of these benchmark problems and
typical comparison results can be found elsewhere''. The
effectiveness of the adaptive time step control solving
these problems is then assessed in the second and third
subsections, first for the ejection problems and then for
the withdrawal problems.
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Fig. 3. CMFD Calculation Flow at Each Time Step with Step Size Control

4.1 Accuracy of the 5" Order BDF Solution

The accuracy of the RENUS solutions is demonstrated
for the A1 and C1 HZP control rod ejection problems. The
core solutions shown in Fig. 4 were obtained with the CN
option and a time step size of 1 ms. The excellent agreement
with the reference PANTHER solution'® indicates the
soundness of the CMFD based solution method of RENUS.
For the same problems, the solutions of the BDF method
of order 5 are compared with the CNET solution in Fig. 5.
The choice of BDF order 5 was dictated first by its popular
use, but it was also confirmed in the RENUS solution for
the C1 problem with a time step size of 10 ms that the 6"
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order BDF solution produces an oscillatory solution
beyond the peak and the 7" and 8" order solutions are
totally wrong. This is due to the instability of excessively
high order BDF.

Fig. 5 reveals that the accuracy of BDF is comparable
to CNET for the Al case regardless of the time step size.
In the C1 case in Fig. 6, however, the 20 ms BDF calculation
predicts the peak earlier and reveals an oscillatory behavior
after the peak whereas the corresponding CNET case still
shows a stable behavior despite some over-prediction of
the peak power. This is because the ejected rod worth is
higher in the C1 case (1.25$ for C1 vs. 1.08$ for A1) so
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Fig. 5. Comparison of BDF and CNET Solutions for A1l

that the transient progress is much faster. Note that the
ordinary Crank-Nicholson case without exponential
transform reveals an earlier peak with 10 ms while the
corresponding cases with BDF5 and CNET are still good.
This degradation in the accuracy of the BDF method
with 20 ms is not considered significant because a time
step size of 20 ms is in fact quite large for this severe
super-prompt critical transient. Later it will be shown
that there will be more gain attainable with the adaptive
time step control scheme readily available with the BDF
method.

Before investigating the effectiveness of the BDF-based
adaptive step size control scheme, it would be worthwhile
to assess the accuracy of the second order analytic
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precursor integration in which the fission source variation
is assumed to be quadratic within the current time step.
Fig. 7 shows the behaviors of the axially-integrated total
neutron source (generation rate) and the delayed neutron
sources at the location where the control rod is ejected in
the NEACRP Cl1 problem. This figure clearly indicates
that the variation of the delayed neutron sources and
consequently that of the precursor densities is much
smoother than that of the total fission source. This is
because there is a sufficiently long delay between the
generation and the destruction of precursors, whereas the
response of prompt neutrons to the external change is
immediate. This smoother variation provides the rationale
that the same 5™ order description as the flux equation
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would not be needed for the precursor equation.

In order to compare the error of the second order
precursor integration against the 5™ order BDF solution
of the precursor equation and also against the first order
precursor integration, the point kinetic equation was solved
for a problem equivalent to the NEACRP C1 benchmark.
Note that the following representations are used for the
5™ order BDF and for the first and second order precursor
integration:

)
BDF5: Y a, .C,. = Bp,— 4Gy, (35)

J=0

Linear: C;, = x,C, ., + %(QU_, P +Q,p,)  (36)

k

Quadratic:C, ; = x,C, +&(Qk,i—2pi—2 37)

8 +Q P +Qk,ipi) .

The point kinetic equation (PKE) is used here for the ease
of implementing these schemes, yet it is sufficient to show
the effectiveness of each scheme. The relative power errors
of the three precursor treatment schemes are shown in
Fig. 8. The reference solution for the error estimation
was obtained by using a very fine time step size of 0.1 ms
while the actual calculations were performed with a time
step size of 5 ms. The figure indicates that the accuracy
of the second order precursor integration is essentially
the same as the 5™ order BDF solution of the precursor
equation while it is substantially better than the first order
integration scheme. The second order precursor integration
has about 0.04% point larger error than the 5" order BDF
solution of the precursor equation. There is no doubt that
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the gain of the simplification of the final linear system
attainable by avoiding the simultaneous solution of the
precursor equation as the result of the second order
precursor integration is much greater than the negligible
loss in solution accuracy.

4.2 Adaptive Time Step Control for Control Rod
Ejection Problems

The step size control algorithm presented in Fig. 2
involves a user input value for the desired error tolerance,
€. The performance of the adaptive RENUS calculation
was first assessed for the control rod ejection transients
Al, Cl1, and C2 with different values of tolerance: 0.1,
0.01, and 0.001. As shown in Figs. 9 through 11, the
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adaptive solution becomes closer to the reference value
in all the three cases as the tolerance becomes tighter.
Considering the computing time shown in Table 1 as
well as the solution accuracy, an error tolerance of 1%
was chosen as the optimum value to be used as the
default in RENUS.

The time step size variation shown in Fig. 12, which
was obtained with an error tolerance of 1% demonstrates
the effectiveness of the adaptive time step control in that
the time step size monotonously increases to the peak
power points, and then it starts to decrease and then to
make a turnover to continuously increase in the asymptotic
period. The saving in the computing time identified in
Table 1 with a tolerance of 1% compared with the fixed
time step size case is however marginal for the first 1 second.

However, noting that the control rod ejection calculation
should be performed until an asymptotic state is reached
for the estimation of the accumulated enthalpy in the
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Fig. 11. Core Power Behavior with Various Error Tolerance
Values for C2

pellet, the calculations were performed up to 20 seconds
with a 1% relative error tolerance. As a measure of the
overall solution error for the 20 second simulation, the
relative root mean square error of the core power defined
by the following was estimated.

. , 1/2
(_ [ (P~ .y ) dtj | (38)

tend

€; =

[ (p0- plo)

The integral is evaluated simply by the trapezoidal rule.
The overall solution error, the number of time steps and
computing time are compared with the results of the fixed
time case in which the 10 ms time step is used throughout
the transient. In one sense, it may not be fair to compare
the fixed time step solution for which a step size of 10
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Fig. 12. Step Size Changes for the Rod Ejection Problems

Table 1. Adaptive Time Control Results for Ejection Problems for Initial 1 Second Simulation

Constant Step of 10 ms
(100 Time Steps) Error Tolerance
Case 0.1 0.01 0.001
CNET Tcpu”| BDF Tcpu

Nrs? Tepu Nrs Tepu Nrs Tepu
Al 23.9 19.3 34 11.8 47 15.8 87 24.5
Cl 22.6 19.9 49 16.3 67 19.7 115 28.0
C2 16.5 16.0 26 7.1 28 7.6 58 13.0

) CPU time in seconds, » Number of time steps
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ms is too small in the later phase of the transient, but it
should be noted that the time step size structure adequate
to the problem can be known only by performing a series
of pilot calculations if no adaptive scheme is available.

Table 2 shows that about 250 seconds are spent
regardless of the type of problem if a constant step is
used. With the adaptive time step control scheme, only
about 24 seconds is needed for solving Series 1 HZP
problems and 10 seconds for Series 2 HFP problems.
Thus it is possible to save the computing time more than
10 times.

4.3 Adaptive Time Step Control for Control Rod
Withdrawal Problems

The HZP control rod withdrawal events are much
longer lasting transients than the ejection events because
the reactivity is inserted gradually as the control rod is
being withdrawn. During the initial phase of this
transient the core power variation is rather slow because
of the insufficient reactivity insertion. The reactor period
continuously decreases as times goes on so that the core
power eventually reaches tens of percent of the rated
power which will induce Doppler reactivity feedback to
bring the core power down to lead a pulse type power
change. During the course of the transient, the reactor
scram signal can be activated due to the overpower trip
set. It is generally not known when the scram would
occur because the core power behavior is not known
until the problem is solved completely. In this regard,
this control rod withdrawal problem is quite dynamic and
an adaptive time step size control is strongly desired in
the analysis.

The RENUS calculation results for the NEACRP
control rod withdrawal cases A and B are shown in Figs.
13-14. The initial core power of these two transients is
10"'% and there is a factor of 3.5 % 10" increase in the
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Fig. 13. Core Power Behavior with Various Error Tolerance
Values for RWA
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Fig. 14. Core Power Behavior with Various Error Tolerance
Values for RWB

Table 2. Number of Time Steps and Computing Time Data for 20 sec Simulations

Case I;i:;s: Overall Error, % Adaptive” Ratio

Nis? Tepu Nis Tcpu
Al 254.7 1.97 77 24.1 26.0 10.6
Bl 253.7 1.91 78 24.2 25.6 10.5
Cl 257.0 3.64 96 27.5 20.8 9.3
A2 249.8 1.14 49 10.9 40.8 229
B2 249.5 0.76 48 10.0 41.7 25.0
C2 251.1 1.26 49 11.0 40.8 22.8

" Fixed Time Step Case, ? Adaptive Time Step Case , ¥ CPU time in seconds, ¥ Number of time steps
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Table 3. Adaptive Time Control Results for Withdrawal Problems
Constant Time Steps Error Tolerance
Case 0.1 0.01 0.001
CNET Tcpu”| BDF Tcpu
Nis? Tcpu Nrs Tcpu Nrs Tcpu
RWA? 208.8 188.4 152 20.2 226 325 538 63.5
RWB?Y 111.6 104.2 114 17.4 181 28.0 339 47.7

" CPU time in seconds
» Number of time steps

90 sec simulation with 2700 time steps (h,=0.1 sec from 0 to 70 sec and h,=0.01 sec from 70 to 90 sec)
9 40 sec simulation with 1300 time steps (h,=0.1 sec from 0 to 30 sec and h,=0.01 sec from 30 to 40 sec)

core power before the scram. It takes about 70 and 35
seconds to reach this level of multiplication for cases A
and B, respectively, as shown in the figures. The reference
solutions in these plots were obtained by CNET with 10
ms throughout the transient while the 10 ms time step is
used only at the first few time steps in the case of adaptive
time step control with BDF.

Similarly to the control rod ejection cases, an error
tolerance of 1% gives quite accurate solutions for the
withdrawal problems as identified in Figs. 13 and 14.
The step size variations shown in Figs. 15 and 16 indicate
that the step size starts to decrease much earlier before
the peak in the case of a 0.1% error tolerance than the
other two cases to get prepared for the rapid rise of the
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core flux near the peak. Note that in these plots the step
size reduces before the peak, but large time steps are
eventually recovered after the peak. The step size could be
greater than 1 sec for the initial slowly varying phase, but
it is forced to be 1.0 because it is the allowable maximum
size which was set so as to prevent excessive increase in
spatial kinetics calculations.

With the adaptive time step control, the number of
time steps and the computing time can be significantly
reduced as demonstrated in Table 3. For a fair comparison
with the constant step size case, a larger step size was used
for most of the period in the constant step case as identified
by the footnotes in Table 3. For the default case of a 1%
error tolerance, it turned out that a factor of 5.8 is possible
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for the rod withdrawal case A and 3.7 for case B. This
significant reduction in the computing time demonstrates
the effectiveness of the BDF-based step size control, which
would ensure the desired solution fidelity as well.

5. CONCLUSIONS

The Backward Differentiation Formula (BDF) method
was successfully applied to spatial kinetics calculation
through the use of the coarse mesh finite difference
(CMFD) formulation. In this implementation, only the
node average flux values of the previous five time points
had to be stored additionally and to be considered in the
construction of the right hand side (RHS) source term in
the temporally discretized nodal balance equation. This
simplified BDF implementation was possible by moving
the unknown flux term of the current time point to the RHS
of the temporally discretized, transverse-integrated one-
dimensional neutron diffusion equation and by introducing
an iterative scheme to update the current time point flux
terms. As a result, the BDF method could be readily
implemented into a CMFD-based nodal kinetics code
without the complications of calculating and storing the
nodal imbalance term, which is inevitable in the Crank-
Nicholson method. The fifth order BDF-based spatial
kinetics calculations of rapid transients turned out to be
as nearly accurate as the state-of-the-art method of Crank-
Nicholson with exponential transform as demonstrated
by the results of the NEACRP hot-zero-power control
rod ejection analyses.

The BDF-based adaptive time step control capability
was accomplished by obtaining an additional solution
with the fourth order formulation. By taking the difference
between the fifth and fourth order solutions, an estimate
of the solution error could be obtained, which was used
to determine the proper time step size to satisfy the given
error tolerance. A practical and stable step size control
algorithm for the spatial kinetic calculation with thermal
feedback was established based on this error estimate.
The computational overhead introduced by using the one
lower order solution could be minimized by reusing
corrective nodal coupling coefficients determined by the
regular order solution.

The performance of the adaptive time step control
was examined for the NEACRP control rod ejection and
uncontrolled withdrawal events. It was verified that an
error tolerance of 1% gave essentially the same solutions
as the reference resulting in flexibly adapting step sizes.
For a long time simulation up to the asymptotic state of
the control rod ejection events, substantial reductions in
the computing time ranging from 10 to 20 times were
possible. For the long lasting withdrawal transients, a
factor of 4 to 6 savings in the computing time was possible
with the adaptive time step control. The results obtained

NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.43 NO.6 DECEMBER 2011

in this work prove that the BDF- and CMFD-based
spatial kinetics calculation together with the two order
solution-based adaptive time step control enables very
efficient yet accurate spatial kinetics calculations.
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