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1. INTRODUCTION

The structures and equipment in a nuclear power plant
are required to resist seismic loads, which are transmitted
directly from the ground to the entire structure in the form
of vibratory loads. According to Reference [1], there are
three analytical methods and two numerical methods that
are used in the dynamic analyses of structures subjected
to ground acceleration. The three analytic methods are
the quasi-static decomposition method[2], the integral
representation with the Cesaro sum technique[1], and the
integral representation with the Stokes’ transformation[3].
The two numerical methods are the large mass FEM
simulation technique and the large stiffness FEM
simulation technique. The numerical techniques are
easily incorporated into commercial programs to solve
the problem. Chen et al.[1] reported that the results
obtained using the five methods are in good agreement
for a Rayleigh-damped Bernoulli-Euler beam. However,
the authors in Reference [1] considered a structure
subjected to given ground displacements while this paper

considers a structure subjected to given ground
acceleration.

When the ground motion is recorded in the form of
an acceleration time history, the most preferred and
convenient way for direct dynamic analyses is the large
mass method because it enables the acceleration time
history to be input easily. Thus, if the dynamic response
analyses are performed using the measured ground
acceleration time history, the acceleration time history
must be transformed to the corresponding loading time
history for the direct dynamic analyses. To accomplish
this, many commercial computer programs employ two
types of methodologies: the large mass method and the
method using relative motion with respect to the ground. [4-6]

The first method is preferred by many users because it is
considered that the FEM requires forces or displacements
as input data, which is true and the use of acceleration as
input data is rare. However, many users still debate the
validity of the large mass method because its analytical
background has not yet been sufficiently described. The
following questions typically asked by users: 

Two types of numerical modeling techniques were considered for the dynamic response of a structure subjected to a
ground acceleration. One technique is based on the equation of motion relative to ground motion, and the other is based on
the equation of absolute motion of the structure and the ground. The analytic background of the former is well established
while the latter has not yet been extensively verified. The latter is called a large mass method, which allocates an appropriate
large mass to the ground so that it causes the ground to move according to a given acceleration time history. In this paper,
through the use of a single degree-of-freedom spring-mass system, the equations of motion of the two techniques were
analyzed and useful theorems are provided on the large mass method. Using simple examples, the numerical results of the
two modeling techniques were compared with analytic solutions. It is shown that the theorems provide a clear insight on the
large mass method.
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• Is it a standard method to use the acceleration time
history when applying a force to the large mass? 

• How do you calculate the mass participation ratio or
how sensitive is the magnitude of the large mass that
is used? 

• When does a problem with a round-off error begin?
In this paper, the mathematical and numerical aspects

of the two models are investigated in order to answer
these questions, and numerical examples are used to
illustrate and verify useful theorems in the large mass
method. 

2. MATHEMATICAL ANAYSIS

2.1 Two Types of Equation of Motion
Consider the simple model shown in Fig. 1, in which

the ground is subjected to an acceleration time history
z̈(t) = a(t). The equation of motion is:

where m, c, and k denote the structural mass, damping
coefficient, and spring constant, respectively. In addition,
v and z are the displacements of the structure and the
ground, respectively. 

Equation (1) can be rewritten as:

where w = v – z, which is the relative displacement of the
structure with reference to the ground, and f(t) = –ma(t).
Equation (3) can be interpreted as the equation of motion
of the system shown in Fig. 2, where the ground is fixed
and the structural mass, m, is subjected to the force, f(t) =
–ma(t). For this reason, the model presented in Fig. 2 is
referred to as the ‘additional force’ model (or AF model)
in this study. Using this model, the dynamic responses of
the relative motion of the structure can be obtained with
reference to the ground.

The ‘large mass’ model (or LM model) is also used
to solve the same problem. To make the ground move in
accordance with the given acceleration a(t), the LM model
introduces a ground mass as shown in Fig. 3, where M
denotes the ground mass. However, it is not expected that
the ground mass moves with the given acceleration a(t)
due to the spring and damper above the ground mass.
Nevertheless, the ground can follow the acceleration
approximately if an appropriately large magnitude of
ground mass is chosen. According to many researchers
and engineers, there is a specific magnitude of the ground
mass (M) that may yield a reasonable dynamic response.
Then, some questions arise including how large the mass
should be to be appropriate for the ground mass and why
this magnitude of the ground mass exists.

Consider the large mass model in Fig. 3. The
equation of motion is:

where F(t) = Ma(t).
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(1)

(2)

(3)

(4)

Fig. 1. Original Model under Consideration

Fig. 2. The AF Model that Corresponds to the Model in Fig. 1

Fig. 3. The LM Model that Corresponds to the Model in Fig. 1
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2.2 Mathematical Analysis on Behavior of the LM
Model
To consider the effect of the inertia terms only, by

summing the two equations in equation (4) the following
equation is obtained:

Dividing both sides of equation (5) by Ma(≠0), the
following is obtained:

where the mass ratio of M/m is called the ‘large mass ratio’
in this paper. A graph of equation (6) is plotted in Fig. 4.

The accelerations of the structural mass (m) and the
ground mass (M) should be in line with equation (6) in
Fig. 4. It can be seen that M/m → ∞ to be z̈ → a from
equation (6).

Assume that a(≠0) is a finite value. Then, z̈ and v̈
have finite values. Under this assumption, the following
theorems can be drawn.

[Theorem 1]
As M/m increases, z̈ approaches a.

[Theorem 2]
If M/m is so large that z̈ → a, then v̈ → 0 but v̈ ≠ 0.

(M/m)a
[Theorem 3]
If M/m is so large as to make  v̈ 0, then  z̈ a.

[Theorem 4]
If M/m is small, then  z̈ ≠ a unless v̈ = 0.

Theorem 1 says that the large mass ratio of M/m should
be large for z̈ to approach the given ground acceleration
(a). However, it does not state the size of the mass ratio.

Theorem 2 and Theorem 3 state that an appropriate
large mass ratio, M/m, exists that induce z̈ → a and v̈ ≠ 0.
However, if v̈ = 0, z̈ will be the same as the ground
acceleration from equation (6), which is described by
Theorem 3. This situation can occur in a numerical
calculation as a result of numerical errors. That is, a value
of M/m that is too large could produce a zero acceleration
of the structure with the assistance of a numerical error.
Numerical errors occur due to the finite number of bits.
Thus, the upper limit of M/m depends on the machines or
programs used.

Theorem 4 states that the acceleration of the ground
mass cannot be reproduced if the mass ratio M/m is small.
Thus, when understood together, Theorem 3 and Theorem 4
state that if the values of the large mass ratio are too small
or too large, it can cause significant errors in the calculation
of the accelerations,  z̈ and v̈.

Now, consider the behavior of the accelerations under
the situation described in Theorem 2. The first part of
equation (4) is given as:

The second part of equation (4) is:

(7)

(8)

(9)

(10)

Fig. 4. Graph of Equation (6)

(6)

(5)



Substituting equation (8) into equation (10), the
following is obtained:

which is the same as equation (5) that was considered as
the starting point for the analysis. 

When the large mass ratio is sufficiently large as
described in Theorem 2, that is, under the conditions of
z̈ → a and v̈ ≠ 0, equation (9) can be written as:

which is the approximate equation of motion of the AF
model. The above analysis demonstrates how the LM model
can yield good approximate solutions when the large mass
ratio is of a sufficient magnitude to make  z̈ → a and v̈ ≠ 0.
Thus, the following theorem can be asserted.

[Theorem 5]
If M/m is sufficiently large to make z̈ → a and v̈ ≠ 0,

the equation of motion of the LM model is reduced,
approximately, to the equation of motion of the AF model.
Therefore, an approximate solution can be obtained under
the conditions of z̈ → a and v̈ ≠ 0. Note that the solutions
obtained using the LM model are not exact solutions but
rather approximate ones.

2.3 Consideration of the Effect of the Stiffness and
Damping Coefficient
According to the analysis in the previous section, the

accuracy of the LM model’s solutions depends on the large
mass ratio because the solutions of the LM model should
satisfy equation (5). In this section, the influence of the
magnitudes of k and c on the accuracy of the LM model’s
solution is investigated and it will be demonstrated that
the accuracy of the LM model’s solution only depends
on the large mass ratio.

Dividing both sides of the second equation in
equation (4), the following is obtained:

For the ground mass in equation (12) to move in
accordance with a given acceleration, a(t), and for the
velocity (v̇ – ż) and displacement (v – z) in equations (7)
or (8) not to be zero, the following conditions should be
satisfied.

where ζ and ωn =√

k/m are the damping ratio and natural

circular frequency of the corresponding AF model,
respectively. Note that the conditions in equation (14)
were obtained from the second equation of the equation
of motion in the LM model. It appears that equation (13)
or equation (14) should be satisfied in order for z̈ → a.

Now, consider the first equation of equation (4) in
addition to the second equation: 

Equation (16) implies that mv̈ represents the sum of the
spring force and damping force. Thus, the second term
mv̈ in equation (5) represents the sum of the spring force
and damping force. Therefore, the effects of the spring
force and damping force do not need to be considered
once the large mass ratio is considered by equation (5).
That is, the accuracy of the solutions obtained using the
LM model depends on the large mass ratio irrespective of
the conditions in equation (14), as stated in Theorem 6.

[Theorem 6]
The accuracy of the LM model’s solution does not

depend on the magnitudes of c and k.

3. NUMERICAL TESTS AND DISCUSSION

In this section, the theorems are verified and the
appropriate size range of the large mass ratio is
determined using various numerical tests. This is
undertaken by performing a dynamic response analysis
using ANSYS, which employs the Newmark method[4, 7].

3.1 Effect of the Large Mass Ratio in LM Model 
Figure 5 shows the original model and its equivalent

AF and LM models. The analytical solutions are given in
the Appendix. 

At first, the effect of the mass ratio M/m was tested in
the LM model in Fig. 5(c) and the results are plotted in
Table 1. From Table 1, it can be seen that M/m = 100 yields
erroneous responses because the mass ratio of M/m is too
small to reproduce the given ground acceleration a(t),
which was predicted using Theorem 1 and Theorem 4.
Physically, the responses for M/m = 100 are interpreted
as follows. The system is a 2-DOF semi-definite system
that consists of two equal masses and one spring. Thus,
one natural frequency is zero and the other is ω = √


k/2m.

The eigenvectors are z v = 1 1 and 1 –1 . Thus, the
system moves like a rigid body and the two masses are
oscillating with the frequency ω = √


k/2m when no

external force exists (or after t = 1 ).
The results of the LM model agree with the analytic

solutions when the large mass ratio is in the range of
M/m = 103 ~ 1011. However, M/m = 1012 gives zero
acceleration of the structure (v̈) even though the large
mass ratio yields a good approximate motion of the
ground mass ( z̈, ż, and z). The results indicate that there
is an appropriate range of the large mass ratio, which was
predicted by Theorem 2 and Theorem 5.

The numerical data of  z̈ and  v̈ during the time interval
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(13)
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(14)
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Fig. 5. (a) The Original Model Subjected to a Ground Acceleration Time History, (b) the AF Model, and (c) the LM Model

Table 1. Dynamic Responses of the LM Model in Fig. 5(c) Subjected to the Ground Acceleration in Fig. 5(a)

acceleration
velocity

displacem
ent

Ground Mass (M) Structural Mass (m)
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0 ≤ t ≤ 1, in which a(t) ≠ 0, are tabulated in Table 2 for
M/m = 1011 and 1012. The dramatic differences in the two
data sets rationalize Theorem 3. 

The physical meaning of the LM model’s solutions
for M/m ≥ 103 can be explained as follows. The LM model
is a 2-DOF semi-definite system that consists of two
unequal masses and one spring. Its natural frequencies

are ω1 = 0 and ω2 = , and the corresponding

eigenvectors are z v = 1 1 and m/M –1 0 –1 ,
respectively.[8] Thus, the system moves as a rigid body
that oscillates with the frequency ω2 when no external
force exists (or after t = 1). Here, it should be noted that
the natural frequency (ω2) approaches the frequency of a
single DOF system with a fixed boundary as the large
mass ratio increases. This implies that the large mass acts
as a fixed boundary although it is also moving. However,
if the large mass ratio becomes extremely large, for
instance M/m ≥ 1012, the value of v̈ becomes so small
during the interval 0 ≤ t ≤ 1 that a computer cannot
precisely express the small value due to the limitations of
bits, that is, the computer expresses the small value of  v̈
as zero due to a truncation error. Meanwhile, the value of
z̈ approaches a = 1 according to equation (6) and the
computer expresses the value as 1.0 for the same reason.
This numerical phenomenon can be observed in Table 2. 

In Table 3, the relative motions ( ẅ, ẇ, and w) of the
LM model are compared with those of the AF model
when M/m = 105. Table 3 shows that the relative motions
of the two models present nearly identical values when
an appropriate ground mass is input. 

3.2 Influence of Erroneous Absolute Motions on
Relative Motions in the LM Model
Using the same test models in Figs. 5(b) and 5(c)

subjected to the ground acceleration time history in Fig. 6,
the same aspects were tested as in the previous section.
The analytical solutions are given in the Appendix.
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0.2

0.4

0.6

0.8

1.0

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

0.100901E-2

0.668855

1.79895

1.81274

0.691424

0.152310E-2

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

0.199933E-2

0.698862

1.81863

1.794179

0.659682

0.855604E-3

M/m = 1011

t z̈ v̈ z̈ v̈ z̈ v̈

M/m = 1012 Analytic

Table 2. Comparison of the Accelerations of the LM Model in Fig. 5(c) Subjected to the Ground Acceleration in Fig. 5(a) when M/m
= 1011 and 1012

Table 3. Comparison of the Relative Motions of the LM Model
(M/m = 105 ) with Those of the AF Model in Fig. 5,
which are Subjected to the Ground Acceleration in
Fig. 5(a)

acceleration
velocity

displacem
ent



Table 4 illustrates that the numerical behavior of the
LM model depends on the mass ratio of M/m. As shown
in Table 4, M/m = 100 yields erroneous responses, which
results from the large mass ratio being too small to
reproduce the given ground acceleration a(t), as predicted
in Theorem 1 and Theorem 4. The mass ratio in the range
of M/m = 103 ~ 1011 yields good approximate accelerations
(z̈ and v̈) while the velocities (ż and v̇) deviate slightly
from the analytical ones. Furthermore, the displacements
(z and v) show significant errors, which will be discussed
later in this section. The mass ratio of M/m = 1012 gives
zero motion of the structural mass, that is, v̈ = 0, v̇ = 0,
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Table 4. Dynamic Responses of the LM Model in Fig. 5(c) Subjected to the Ground Acceleration in Fig. 6

acceleration
velocity

displacem
ent

Ground Mass (M) Structural Mass (m)

Fig. 6. Ground Acceleration Time History



and v = 0. The accelerations z̈ and v̈ during the time
interval 0 ≤ t ≤ 1, in which a(t) ≠ 0, are tabulated in Table
5, and they are compared with the accelerations when
M/m = 1011. The presence of an appropriate range of the
large mass ratio was predicted by Theorem 3. The physical
meaning of the responses in the LM model, which depend
on the large mass ratio, is identical to the explanations in
the previous section.

In Table 6, the relative motions ( ẅ,  ẇ, and w) of the
AF model are compared with the relative motions
calculated using the results of the LM model when M/m =
105. Table 6 shows that the LM model produces nearly
identical relative motions to those of the AF model even
when the absolute velocity (ż) and displacements (z and
v) include errors. However, these errors can be reduced
using a smaller time increment (∆t ). To demonstrate this,
the same LM model was tested using different time
increments when M/m = 105. The results are plotted in
Table 7, which shows that the errors originated from the
size of the time increment of Newmark method of direct
integration. 
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M/m = 1011

t z̈ v̈ z̈ v̈ z̈ v̈

M/m = 1012 Analytic

Table 5. Comparison of Accelerations of the LM Model in Fig. 5(c) Subjected to the Ground Acceleration in Fig. 6 when M/m = 1011

and 1012

Table 6. Comparison of the Relative Motions of the LM Model
(M/m = 105) with Those of the AF Model in Fig. 5, which
are Subjected to the Ground Acceleration in Fig. 6

acceleration
velocity

displacem
ent

Fig. 7. The LM Model for Test where M/m = 105



3.3 Verification of Theorem 6 
To validate Theorem 6, numerical tests were performed

by varying the magnitude of k for the LM model in Fig. 7,
where m = 10, M = 106, and M/m = 105. The values of
stiffness were k = 104, 105, 106, 107, and 108, as tabulated
in Table 8. The damping ratios of all cases in Table 8 are
ζ = 0.5. 

If Theorem 6 is incorrect, only Cases 1 and 2, which
satisfy the conditions in equation (14), can produce good
approximate solutions. Otherwise, all five cases will
produce good approximate solutions. 

The numerical results for the fifth case (k/M = 102) in

Table 8 are plotted in Table 9. The numerical responses
in Table 9 agree with the analytical ones. The numerical
results of the other cases in Table 8 also display accurate
numerical behaviors. This indicates that the magnitudes
of stiffness and the damping coefficient do not influence
the accuracy of the numerical solutions if the large mass
ratio is sufficiently large.

3.4 Responses Compared with an Acceleration
Time History of an Earthquake 
Thus far, simple acceleration time histories have been

used to demonstrate the theorems. In this section, the real
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Table 7. Dynamic Responses of the LM Model in Fig. 5(c) Subjected to the Ground Acceleration in Fig. 6, which are Dependent on
the Time Interval (∆t )

acceleration
velocity

displacem
ent

Ground Mass (M) Structural Mass (m)
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Case

k 104

102.5 103 103.5 104 104.5

10–2 10–1 100 101 102

105 106 107 108

c = 2ζ √

mk

k/M

103 (<< Mm ) 104 (<< Mm ) 105 (= Mm ) 106 (>> Mm ) 107 (>> Mm ) 

101.5 (<< Mm ) 102 (<< Mm ) 102.5 (<< Mm ) 103 (<< Mm ) 103.5 (<< Mm ) 

ωn
2

2ζωn

1 2 3 4 5

Table 8. Test Cases for Various Magnitudes of k and Their Conditions in Eq. (14) for M/m = 105, m = 10, and ζ = 0.5

Table 9. Dynamic Responses of the LM Model in Fig. 7 for k/M = 102 in Table 8

acceleration
velocity

displacem
ent

Ground Mass (M) Structural Mass (m)



seismic acceleration time history of a ground, which is
the east-west direction time history data from the El
Centro site in the Imperial Valley irrigation district on
May 18, 1940, is employed to demonstrate that the
theorems hold well for real earthquake-induced ground
accelerations. The acceleration time history during the
first six seconds, which is shown in Fig. 8, is used to
verify the accuracy of the solutions of the LM model and
AF model. 

Applying the time history data into the single DOF
LM model and AF model in Fig. 5, the results were plotted

as in Table 10 and Table 11. Table 10 shows that the
absolute motions of the ground and the structural mass (m)
agree with the analytic solutions. The analytic solutions
designated by ‘Analytic_1’ were calculated using numerical
integration of the acceleration time history of the El Centro
earthquake in Fig. 8. Those for ‘Analytic_3’ were obtained
by summing ‘Analytic_1’ and “Analytic_2”, which appear
in Table 11. The “Analytic_2” data are the relative motions
( ẅ,  ẇ, w) calculated using the convolution integral.

Table 11 shows three sets of relative motions: the
‘LM model’ set obtained by subtracting the ground

371NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.43  NO.4  AUGUST 2011

KIM et al., Mathematical Analysis Using Two Modeling Techniques for Dynamic Responses of a Structure Subjected to a Ground Acceleration Time History

Table 10. Dynamic Responses of the LM Model in Fig. 5(c) Excited by the Acceleration Time History of the El Centro Earthquake
when M/m = 105

acceleration [m
/s/s]

velocity [m
/s]

displacem
ent [m

]

Ground Mass (M) Structural Mass (m)



motions from the absolute motions of the structural mass,
the ‘AF model’ set obtained using the AF model, and the
‘Analytic_2’ set calculated using the convolution
integral. The three sets of relative motions agree well
with each another. Thus, all motions in Table 10 and
Table 11 are accurate motions of the ground and
structural mass, even when the El Centro acceleration
time history is employed for the excitation.

4. CONCLUSION

Useful theorems on the large mass (LM) model are
presented through a mathematical analysis of the
equations of motion of a structure subjected to a ground
acceleration time history. The analysis provides insight
into how the LM model yields good or erroneous
solutions depending on the ratio of the ground mass to
the structural mass. It also shows that the solution’s
erroneous behavior in the LM model is not related to the
magnitudes of stiffness and the damping coefficient.
Numerical tests confirmed the theorems and
demonstrated that the large mass ratio should not be too
small or too large in order to produce good approximate
solutions. The velocity and displacement responses of the
LM model also showed numerical errors if the time
increment of the direct integration was not sufficiently
small. However, the relative motions obtained using the
motions of the LM model are accurate if the large mass
ratio is appropriately large.

In contrast to the LM model, the AF model produced
accurate relative motions and does not require an
artificial parameter to be input. Thus, the AF model is
recommended over than LM model when only the
relative motions are sought for the system excited by a
ground acceleration time history. 

APPENDIX

(i) Analytic Solutions for the System Subjected to
the Acceleration in Fig. 5:
Assume that initial conditions are given by:

and the ground acceleration history is given as:

By successive integration of  z̈(t) in equation (A2),
the following velocity and displacement of the ground
are obtained:
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Table 11. Comparison of the Relative Motions of the LM Model
(M/m = 105 ) with Those of the AF Model in Fig. 5,
which are Subjected to the Ground Acceleration
Time History of the El Centro Earthquake.

acceleration [m
/s/s]

velocity [m
/s]

displacem
ent [m

]

Fig. 8. The East-west Direction Accelerogram for the First Six
Seconds Recorded at the El Centro Site in the Imperial Valley

Irrigation District on May 18, 1940.

(A1)

(A2)

(A3)



The equation of motion of the system in Fig. 5 is
expressed as: 

where

Using equations (A1) and (A6), the initial conditions
of equation (A5) are obtained as follows:

Applying a convolution integral[9] to equation (A5),
the following solutions are obtained: 

where ωn = √

k/m .

Then, using the relation v = z + w, the following
motions of structural mass are obtained:

(ii) Analytic Solutions for the System Subjected to
the Acceleration in Fig. 6:
For the same initial conditions as equation (A1), the

solution of equation (A5) subjected to following ground
acceleration history is obtained.

Integrating the above equation (A14) successively,
the following is obtained:

Applying the convolution integral to the equation of
motion (A5) with the initial conditions in equation (A7),
the following solutions are obtained: 

Then, using the relation v = z + w, the motion of
structural mass is obtained as follows:
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