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1. INTRODUCTION

A heat transport system (HTS) is responsible for heat
removal from the nuclear fission process in CANDU
(CANada Deuterium Uranium) reactors, which are
pressurized heavy-water reactors (PHWR). HTS aging
has the potential to adversely affect the safety margins.
Diametral creep of the pressure tube (PT) is one of the
principal aging mechanisms governing the heat transfer
and hydraulic degradation of an HTS. The HTS of CANDU

nuclear reactors experience time-dependent dimensional
changes in the PTs through a creep mechanism. In particular,
PT diametral creep leads to diametral expansion, which
affects the thermal hydraulic characteristics of the coolant
channels and the critical heat flux (CHF) (refer to Fig. 1).
The CHF is a major parameter determining the critical
channel power (CCP), which is used in the trip setpoint
calculations of regional overpower protection (ROP)
systems. Therefore, it is essential to predict the PT diametral
creep in CANDU reactors, which is caused mainly by fast
neutron irradiation, temperature and applied stress.

The currently used PT diametral creep prediction
model considers the complex interactions between the
effects of temperature and fast neutron flux on the
deformation of PT zirconium alloys [1]. The model
assumes that long-term steady-state deformation consists
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of separable, additive components from thermal creep,
irradiation creep and irradiation growth [1]. This is a
mechanistic model based on measured data. However,
this model has high prediction uncertainty. Recently, a
statistical error modeling method was developed using
plant inspection data from the Bruce B CANDU reactor [2].
Owing to the significant effect of diametral creep on the
safety margin in CANDU reactors, many studies have
examined methods for predicting PT diametral creep.

The Wolsung nuclear power plant has very good field
data, which is not data of a laboratory level, to estimate
the PT creep. The aim of this study was to develop a bundle
position-wise linear model (BPLM) to predict PT diametral
creep employing previously measured PT diameters and
HTS operating conditions. The BPLM was optimized using
a genetic algorithm. A variety of measured or estimated
data including the neutron flux, effective full power days
(EFPDs), HTS temperature and other parameters were
considered as input data to the BPLM. The proposed BPLM
used to predicting PT diametral creep was verified using
the operating data of the Wolsung nuclear power plant in
Korea.

2. GENETIC OPTIMIZED BUNDLE POSITION-WISE
LINEAR MODEL (BPLM)

2.1 Linear Model
A linear model is a flexible generalization of ordinary

least squares regression. In this paper, the linear model
was optimized using a genetic algorithm in order to easily
impose some constraints on the regression coefficients
and to accomplish global minimization. The linear model
is generally described as follows:

where p is the number of input variables. Variables x1 to xp

are the input signals that represent the fast neutron fluence,
temperature, EFPD, etc. y is the output signal, which
indicates the PT diametral creep or PT diameter. εij is a
random error for bundle i and channel j . Eq. (1) can predict
PT diametral creep or the PT diameter at all bundle positions
and channels using a single model. 

The estimated output from the linear model is expressed
as follows:

The BPLM was also used to predict the PT diametral
creep. This BPLM was devised because it is expected
that the bundle position affects the diametral creep. The
BPLM is described as follows:

where i indicates the bundle position in a PT channel.
The estimated output from the BPLM is expressed as

follows:

Since a CANDU PT channel has 12 bundles, 12 linear
models will be developed. 

The appropriate selection of training data is very
important because it can affect the optimization of the
BPLM model. The input and output training data is expected
to be in the form of clusters and the data in these cluster
centers is more informative than the neighboring data. A
BPLM model can be well trained using informative data. 

It is assumed that M input/output data (zk=(xk,yk),
k=1,2,...,M) is available and the data points are normalized
in each dimension. The subtractive clustering (SC) scheme
begins by generating a number of clusters in m
dimensional input space, where m is the number of input
variables. The SC scheme uses a measure of the potential
of each data point, which is a function of the Euclidean
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Fig. 1. Fuel Channel Configuration in a Normal and Crept Pressure Tube
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distances to all other input data points [3]:

where rα is the radius defining a neighborhood, which
has considerable influence on the potential. Obviously,
the potential of each data is high when it is surrounded
by a considerable amount of neighboring data. After the
potential of each data point is calculated, the data point
with the highest potential is selected as the first cluster
center.

In general, after determining the ith th cluster center
ci and its potential value Pi

c, the potential of each data point
is revised using the following equation:

where rβ is also the radius, which is usually greater than rα
in order to limit the number of clusters generated. When
the potential of all data points has been revised according
to Eq. (6), the data point with the highest potential is selected
as the next cluster center. These calculations stop if the
inequality Pi

c < εP1
c is true. Otherwise, these calculations

are repeated. 
The data positioned at the cluster centers is used as

selected training data to develop the BPLM model.

2.2 Genetic Algorithm
John Holland formally introduced genetic algorithms

for optimization in the 1970s [4]. Compared to conventional
optimization methods, which move from one point to
another, genetic algorithms begin from many points,
simultaneously climbing many peaks in parallel. Therefore,
genetic algorithms are less susceptible to being stuck at
local minima than are conventional search methods [5,6].
Although a genetic algorithm has the disadvantage of being
computationally expensive, it is the most useful method
for solving optimization problems with multiple objectives.
In genetic algorithms, the term chromosome refers to a
candidate solution that minimizes the cost function and is
often encoded as a bit string. Each chromosome can be
thought of as a point in the search space of candidate
solutions. The genetic algorithms require a fitness function
that assigns a score to each chromosome (candidate solution)
in the current population, and maximizes the fitness
function value. The fitness of a chromosome depends on
how well that chromosome solves the problem at hand [6].

After an initial population of chromosomes is generated
randomly, the typical genetic algorithm evolves the
population through three operators; selection, crossover
and mutation. The selection operator selects individuals
(chromosomes) in the population for reproduction. The
goodness of each individual depends on its fitness. The
fitter the chromosome, the more times it is likely to be
selected to reproduce. After two individuals are chosen

from a population using the selection operator, the crossover
operator chooses a crossover site randomly along the bit
strings and exchanges the subsequences before and after
that crossover site between the two individuals to create
two offspring. The two new offspring created from this
mating are placed into the next generation of the population.
This process is likely to create even better individuals by
recombining portions of good individuals. With some
low probability, a portion of new individuals will have
some of their bits flipped. A mutation can occur at each
bit position in a string with some probability, normally
very small. Its purpose is to maintain diversity within the
population and inhibit premature convergence.

A genetic algorithm uses a cost function that evaluates
the extent to which each individual is suitable for the given
objectives, such as maximum error together with a small
overall error. The fitness of an individual (chromosome)
is calculated using the energy of an individual. Each
chromosome contains the coefficients aij of the linear model.
A chromosome with a lower energy has higher fitness.
The energy functions are defined using the following two
equations.

E1 and E2 are the root mean squared errors and maximum
absolute error, respectively. The subscript ‘r’ indicates
the ‘reference’ or ‘target’ values. The fitness function is
given as follows:

Three schemes were applied to increase the efficiency
of the conventional genetic algorithm [7]. Initially, the
proposed genetic algorithm has initial coarse tuning
characteristics by first representing each parameter in a
chromosome by a small bit number. If the parameters in
a chromosome are represented by large bit numbers, the
genetic algorithm can find the accurate optimal points in
the limit of resolution but requires much more time to reach
a convergence point. Therefore, it is essential to represent
by a large bit number because many chromosomes gradually
approach optimal points. Using this scheme, the genetic
algorithm has initial coarse tuning and final fine tuning
characteristics. The crossover site is selected in two ways.
In the first the crossover site is selected randomly in a
chromosome. In the second the crossover site is selected
only between the parameters in a chromosome. This scheme
slows premature convergence without reaching optimal
solutions and speeds up the final convergence. In addition,
a portion of the population of chromosomes with greater
fitness in a priori generation is added to the new generation.

(5)

(6)

(7)

(8)

(9)



The same portion of the population of chromosomes with
lower fitness in the total new generation is then removed
to inhibit final drifting without convergence. Also, the other
coefficients of Eq. (4) except for the bias term aio are bound
to be positive values.

2.3 Uncertainty Analysis
The BPLM, which is a data-based model, requires

uncertainty analysis to determine the accuracy of predictions.
After uncertainty analysis, a prediction interval can be
calculated such that the exact value exists in the prediction
interval at a specified confidence level.

The BPLM has several possible sources of uncertainty
in the predicted values; selection of training data, model
structure including complexity, and noise in the input and
output variables [8]. Since a BPLM is developed using a
given training data set, each possible training dataset selected
from the entire population of data will generate a different
model and there will be a distribution of predictions for a
given observation. In addition, model misspecification
occurs when the model structure is not correct, thereby
introducing bias. Analytical methods were used in this
study [8-12].

A regression model for a specific ith bundle position
in Eq. (3) can be established from the N training data
points {(x1,y1),(x2,y2),…, (xN,yN)}:

where

For a regression model of an observation xo, which is not
part of the training data, the output prediction is given by

Using the Taylor series expansion of the output
prediction to the first order, the output prediction can be
approximated as follows:

where

The prediction error of the BPLM can be calculated as

The variance of the prediction error can be expressed as

where

In the BPLM, the variance-covariance matrix S cannot
be calculated because the parameter θ is optimized with a
genetic algorithm. However, the optimized parameters are
not expected to be largely different from the parameters
determined from the minimization of squared errors.
Therefore, if the parameter is assumed to be estimated
explicitly with the well-known squared error minimization
technique, the variance-covariance matrix can be estimated
as follows [12]:

where

The matrix F is called the Jacobian matrix of first
order partial derivatives with respect to the parameters
determined from the minimization of squared errors.

The variance of the predicted output can be estimated
as follows [12]:

The estimate with a 95% confidence interval is
expressed as

3.  APPLICATION TO THE DIAMETRAL CREEP
PREDICTION

The data used consisted of a total of 588 input-output
data pairs (x1,…, x3, y) taken from the Wolsung nuclear
power plant units 2, 3 and 4 (WS2, WS3 and WS4). This
data was acquired at 1501.04, 1943.71 and 3255.53
effective full power days (EFPDs) from unit 2, and 1324,
2183 EFPDs from unit 3, and 937, 2154 EFPDs from unit
4. Table 1 shows the PT channel identification name and
EFPD of the acquired data. In this paper, all units are
considered to have the same type (material and composition)
of pressure tubes. 

Table 2 compares the results of the BPLM using Eq.
(4) and those of a general linear model using Eq. (2). The
BPLM is superior to the general linear model. The general
linear model predicts diametral creep at 12 bundle positions
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using only one model. On the contrary, the BPLM predicts
diametral creep using 12 different equations corresponding
to 12 different bundle positions. Seventy percent (408
training data) of the acquired data was used to optimize
the regression coefficients in Eqs. (2) and (4) using the
genetic algorithm. One hundred and eighty test data points
were used to independently verify the models. From this
point, the BPLM will be examined in detail.

Table 3 lists the diametral creep prediction of the
pressure tubes according to the usage of the EFPD value
as an input. These results show that the RMS error and
maximum error of the BPLM with EFPD value as an

input are smaller than those of the BPLM without the
EFPD value as an input. Therefore, the BPLM model
with the EFPD as input is better for predicting diametral
creep.

Figures 2 and 3 show the estimated RMS errors and
maximum errors for the 12 bundle positions. Fig. 2 shows
the estimated RMS errors and maximum errors when the
EFPD is used as an input. Fig. 3 shows the estimated
RMS errors and maximum errors when the EFPD is not
used as an input. As shown in Table 3, Figs. 2 and 3 explain
that the estimated RMS errors and maximum errors of
the BPLM with the EFPD as an input were smaller than
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Table 1. PT Channel Identification Name and EFPD of the
Acquired Data

2

2

2

3

3

4

4

1501.04

1943.71

3255.53

1324

2183

937

2154

L09, L13, M11, N03, N21, O08, O14, Q06,
Q11, S07, S15 

L13, N21, O08, O14, Q11, S07, T08

L13, N21, O08, O14,   Q11, S07

L13, M11, N03, O08, O14, Q06, Q11, Q18,
S07, T10, U11

O08, O14, Q11, U11

L13, M11, N03, O08, O14, Q06, Q11, U11

O08, O14

unit channels EFPD

Table 3. Diametral Prediction of Pressure Tubes According as Whether or not the EFPD Values Are Used as an Input

Training data

Test data

408

180

RMS error (mm)

0.0827

0.1087

Max. Error (mm)

0.1728

0.2626

RMS error (mm)

0. 0835

0. 1112

Max. Error (mm)

0. 2040

0. 3954

Data Type Data points
Usage of EFPD No Usage of EFPD

Table 2. Comparison of the BPLM and a General Linear Model

Training data

Test data

408

180

RMS error (mm)

0.0827

0.1087

Max. Error (mm)

0.1728

0.2626

RMS error (mm)

0. 1051

0. 1818

Max. Error (mm)

0. 2534

0. 5368

Data Type Data points
BPLM General Linear Model

Fig. 2. Estimated RMS Errors and Maximum Errors as a
Function of the Bundle Position of the BPLM with EFPD

Value as an Input
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those of the BPLM without the EFPD as an input. The
case in which the error of the test data is smaller than that
of the training data, as shown at the inlet bundle position
in Figs. 2 and 3, occurs too much frequently. It seems
that the condition of the training data sufficiently covers
the condition of the test data because the creep at the inlet
bundle position is relatively lower than at any other bundle
position. In addition, as shown in Figs. 2 and 3, the RMS
error at the 8th, 9th, 10th and 11th bundle positions starting
from the PT inlet is higher than at other bundle positions
because the fuel bundles at those positions are expanded
more diametrically than the fuel bundles at the other
positions due to the combined effect of high coolant
temperature at the PT outlet-side and high neutron flux at
the midpoint of the PT. 

Since the estimated diameters of the current design
model are given at 1500 EFPD, very near to 1501.04
EFPD where measured data exist, the results of the
proposed BPLM and the current design model were
compared (refer to Table. 4). The current design model is
explained in [1], which is used to predict the diametral
creep in the Wolsung nuclear power plants. The proposed
BPLM is superior to the current design model.

To examine the prediction performance of a future
PT creep based on previously measured data, the data,
except for 3255.53 EFPD in Wolsung unit 2, were used
for training and data at 3255.53 EFPD, which are the
highest EFPD, were used for the test. The operating time
point, 3256.53 EFPD, is the latest (longest) operation
point. Therefore, that operation point is used for testing
the prediction (kind of extrapolation) performance of the
BPLM by developing the BPLM model using old operating
data. Table 5 shows the diametral creep prediction of the
pressure tubes for this case. As can be seen in Table 3,
the BPLM can predict future PT creep well. The error
tends to increase slightly but it is not so large as to degrade
the prediction capability of the BPLM model.

All the acquired data included the data of the channels
that had been measured repeatedly under different age
conditions (EFPD). It was possible to develop a linear
fitting model according to the EFPD for these repeatedly
measured channels. The PT diameter of the channels,
measured repeatedly by the linear fitting model, can be
considered as a measured (target) diameter for future
EFPD values. Fig. 4 shows the estimated errors as a
function of the EFPD for the Wolsung unit 2 (WS2) and
the errors increase globally according to EFPD. Fig. 5
compares the RMS errors estimated by the proposed
BPLM and by the current design model for 10 repeatedly
measured channels of Wolsung units 2, 3 and 4. The
error is based on the maximum bundle diameter in a
channel and also based on the values averaged upon
1500 EFPD interval from 3000 EFPD to 9000 EFPD.
The diameters estimated by the linear fitting model using
the repeatedly measured channel data were considered as
target values. The results show that the BPLM can predict
future PT diameter well. Also, it is shown that the prediction

Table 4. Comparison of the Proposed BPLM and the Current
Design Model at 1501 EFPD

BPLM

Current Design Model

0.0681

0.1503

0.1587

0.2899

Model RMS error (mm) Max. Error (mm)

Table 5. Diametral Prediction Performance of the Pressure Tubes by BPLM

Training data
(except for 3255.53 EFPD data)

Test data 
(3255.53 EFPD data)

490

72

0.0882

0.1248

0.2197

0.1994

Data Type Data points RMS error (mm) Max. Error (mm)

Fig. 3. Estimated RMS Errors and Maximum Errors as a
Function of the Bundle Position of the BPLM without EFPD

Value as an Input



capability of the BPLM is superior to that of the current
design model.

Figures 6 and 7 show the target and estimated diameters
in the L13 and O08 channels, respectively, along with the
prediction intervals for the corresponding channel. The
data at 3255.53 EFPD consists of 6 sets of channel data.
Results similar to the L13 and O08 channels were obtained
for the N21, Q11, O14 and S07 channels. All the measured
diameters exist in the prediction interval, which means
that the coverage is 100%. This complete coverage
originates from the BPLM, which was developed using
available data with the exception of 3255.53 EFPD data
points in unit 2 (training data) and the 3255.53 EFPD
data points (test data).

4. CONCLUSIONS

A BPLM was developed to predict PT diametral creep
using the previously measured PT diameters and the HTS
operating conditions in CANDU reactors. The linear
model was devised based on bundle position and was
optimized by a genetic algorithm because it is expected
that each bundle position in a PT channel has inherent
characteristics. A range of measured or estimated data,
including the neutron flux, effective full power days
(EFPDs), HTS temperature and other parameters were
considered as input data to the BPLM. Finally, the fast
neutron fluence, HTS temperature and EFPD were used
as inputs to the BPLM. 
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Fig. 4. Estimated RMS Errors and Relative Errors as a
Function of the EFPD for WS2

Fig. 5. Estimated RMS Errors by the BPLM and the Current
Design Model for 10 Repeatedly Measured Channels of

Wolsung Unit 2, 3 and 4
Fig. 7. Prediction Intervals of the BPLM Model in the O08

Channel at 3255.53 EFPD

Fig. 6. Prediction Intervals of the BPLM Model in the L13
Channel at 3255.53 EFPD



The proposed BPLM for predicting PT diametral creep
was verified using the operating data of the Wolsung
nuclear power plants in Korea. The BPLM was able to
predict the PT diametral creep accurately (with an accuracy
of ~ 0.1mm RMS error). In addition, since the development
of a BPLM requires uncertainty analysis to determine
how accurate the predictions are, estimates with a 95%
confidence interval were obtained for 72 test data points
(6 channels used as test channels) by performing analytical
uncertainty analysis. The coverage of the prediction interval
was 100%.
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