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1. INTRODUCTION

The dead times that occur in counting systems cause
a loss of counts. For the original process, described by a
simple Poisson distribution, the counting statistics are so
simple that the event intervals are of an exponential type
and the variance of counts is equal to the mean number
of counts, independent of the counting period. The dead
times distort the counting statistics, including the event
interval distribution, mean and variance of the counts,
and other quantities as well. Since the topic of counts
loss is mostly important for radiation detection in nuclear
science and technology, a lot of effort has been made to
understand and correct the effects of dead time (DT).
Earlier studies have modeled and classified the DTs into
the extended (E, paralyzable or cumulative) types and
non-extended (NE, non-paralyzable or non-cumulative)
types [1,2]. The E-type DT is initiated by any arriving
pulse and is extended for its magnitude τE, beginning
from the instant of pulse arrival. The NE-type DT is
activated by an arriving pulse only when the pulse arrives
at the DT circuit in a state free from dead status, but its
period is fixed to the magnitude τNE, and is not extended
by any pulse arriving during the DT period. No pulses
arriving during the DT period are allowed to pass the
circuit nor can they register a count [3-5]. The description
of DTs by either an E-type or an NE-type has been studied

extensively to determine the effects of the DT on the
counting statistics. After a few pioneering studies spanning
more than a half-century, the detailed statistics of counting
are known for a single DT of NE- or E-type under a
Poisson input distribution [1-2,6-16]. For this progress,
the development and use of renewal theory and operational
calculus is crucial [1,2,17]. In theoretical modeling of DT
behavior, an event pulse is regarded as infinitely sharp in
the time domain. Real pulses have, however, finite widths
and hence they can be overlapped and lead to pulse pile-
up. In addition to E- and NE-DTs, pulse pile-up is another
important source of counting loss and distortion of statistics.
However, pulse pile-up has a complicated DT feature
depending on the details of the counting system, as well
as the pulse heights in pile-up. Pommé et al. demonstrated
that the counting statistics of leading edge pile-up are
fundamentally different from those of the E- and NE-type
DTs. Therefore, it is known as a new type for describing
the DT [18]. The effects of pulse pile-up have been studied
in the specific experimental arrangement [18], whereas
more theoretical work is still needed to fully understand
the statistics. For an experimental study on counting
statistics distorted by DTs, most of the concern has
concentrated on correcting the count loss due to the DTs
present in the detection system. Many experimental
techniques have been developed for this goal, including
the live time method [19,20], pulser technique [21,22],
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loss-free counting [23,24], and the real time method by
imposing an artificial but controlled DT [25,26,28] with
a DT correction for counting loss based on a transmission
formula [25,27]. Additional information on the variance of
the counts modified by the DTs is required for measurements
based on the variance-to-mean ratio [28-31]. This is also
important for accessing the uncertainty of DT correction
based on the transmission formula [32,33].

Various experimental approaches can be used to
characterize the DTs in a counting system. A review of the
experimental problems associated with DT measurement
is beyond the scope of this study and reference to the
relevant reports is recommended [3,34]. The most basic
and characteristic information on DTs in a counting system
is obtained by measuring the event time interval distribution
(TID). Few studies have successfully cleared the DT
characteristics from the measured TID in the detection
arrangement, particularly when the series DTs were
involved and the theoretical TID distorted by the series
DTs was unknown [13,14,18,31,35]. Characterization of
the DT and accessing of its magnitude is facilitated by
inserting a DT module, which can provide either an NE-
type [25] or E-type DT [26] with a controllable duration,
at the later stage of the counting circuit [25,27,28,31].
Alternatively, the mean counting rates or variances are
measured for various input rates and the distorted behavior
of the counting statistics is compared with the DT model
prediction. Even if the TID is measured, it normally
indicates the magnitude of the dominant DT in the counting
arrangement, whereas modeling the counting behavior by
either a single E or NE DT is insufficient for a realistic
system to explain the counting rate or variance, especially
at higher counting rates. DT models based on a series
combination of two or more DTs are more suitable because
a real counting system is normally composed of a detector
and several electronic circuit modules combined in series
[1,14,27,33,36-41]. An exact analysis of the DT behavior
of the counting arrangement requires a general theoretical
treatment of many DTs occurring in series. In this context,
the counting statistics of two DTs in series on the starting
approach were studied long ago. There are four possible
cases of two DTs combined in series; NE-NE, E-NE,
NE-E and E-E. Earlier theoretical studies focused mainly
on calculating the mean count rates or, more precisely,
the asymptotic mean count rates [1,6,14,36-39]. These
theoretical studies of series of two DTs did not lead to an
understanding of the full counting statistics, due mainly
to complications involved in the relevant mathematics.
To probe the behavior of counting statistics for such a
complicated DT system, the Monte Carlo simulation
provides a versatile application and can be used as an
alternative. If mathematical analysis can be achieved
successfully, it will provide a firm basis and exact formulae
to understand the distorted statistics of the counting system
and to correct the experimental effects caused by the DTs.
For a detailed discussion of the counting statistics, the

TID functions, the exact mean and variance of the counts,
and the asymptotic mean and variance of counts in a
measurement interval, were considered. These five
observable statistics need to be classified for the three
different choices to start the counting period, “ordinary,”
“equilibrium (or stationary),” and “shifted (or free counter)”
processes [15]. In the complete description of the counting
statistics, there are also quantities, such as the first event
TID function, g1(t), for the equilibrium counting and the
probability, Wk(t), for obtaining the exact k counts within
the counting period (0,t).

In a previous study, the event TID functions, the exact
mean and variance of the counts in a measurement interval,
and the associated asymptotic expressions were given in
a full set for a series of two DTs ended by an E-type DT,
which were denoted as NE-E and E-E cases, respectively
[40]. Most of the derivations were based on the existing
formalism arising from renewal theory and operational
calculus with associated tedious algebra [1,2,9-17]. An
explicit derivation can be avoided for the first event TID
function, g1(t), of the equilibrium process and the probability
distribution, Wk(t), of exact k counts in time t, in order to
obtain the exact mean and variance of the counts [40].
Instead, these values could be obtained from an integral
formula that leads to a closed form or a numerical one. In
this study, the event TID functions, the exact mean and
variance of the counts in a measurement interval, and the
associated asymptotic expressions were given in a full set
for the series of two DTs ended by an NE-type DT, which
were denoted by E-NE and NE-NE cases, respectively.
The features of the counting statistics were discussed for
each case of the E-NE and NE-NE series DTs. Through
the present and previous studies [40], all the TID functions
and total density functions were known for the series of
two DTs. Therefore the advanced task of providing the
mean counting rates for the series of three DTs was
achieved.

2. MATHEMATICAL THEORY

2.1  The Event TID and Total Density
Fig. 1 gives a schematic diagram of the series

combination of two DTs. At a point in the circuit, the
arrival of events or pulses is random due to the random
nature of these events at the input of the detection system.
In an ordinary process of counting, the time origin is taken
as the instant of an event arriving at a position in the circuit
under consideration; the event is not taken into a count
but is regarded as the zeroth event by convention. Then,
the interval between the successive events is a random
variable of which the density distribution function is the
event TID function f (t). This is the most fundamental
quantity that needs to be obtained before considering all
the other quantities. The interval between the k-fold
successive events is the multiple interval density of the
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order k, which is denoted by f k(t). It is simple to see that
f 1(t) = f (t), and f k(t) (k ≥ 2) is given by the convolution
integral of f k-1(t) and f (t). An equally important quantity
is the total density (or renewal density) function, D(t),
which is the rate of arriving events at time t. Since the
arriving event rate at time t is comprised of all the possible
k-th fold successive events, the total density function, D(t),
is given by the sum,

It is well-known that instead of performing the k-fold
convolution integral to obtain f k(t), the operational calculus
based on the Laplace transformation and its inverse is taken
from the tables to obtain the final result in a straightforward
manner [42]. The Laplace-transformed quantities are
denoted by both a right superscript * and the variable s, such
as f k*(s), and D*(s). Using the Laplace transform, f *(s),
the total density in the s-domain, D*(s), can be given as
follows:

The inverse of the D*(s) gives the total density, D(t), often
after some lengthy algebra. Eq. (2) holds true between any
TID function f *(s) and the corresponding total density
function D*(s) [17]. The location of the circuit at which
the densities are relevant is indicated by the left subscript.
The originating event TID was assumed to be 0 f (t) =
U(t)ρexp(-ρt), a Poisson distribution [5] with a constant
event rate, 0D(t) = ρU(t), where U(x) is the Heaviside
unit step function [42]. The DT modifies the TID and
counting statistics of the incoming events. The left
superscript NE, E or their combination in the modified
statistics indicates the type of the first DT or that of the
series DTs. When the magnitude of the second DT is less
than or equal to that of the first one (τ2 ≤ τ1), it does not
affect the overall counting and statistics (masking effect).
Hence, only the case of τ2 > τ1 is considered in the series
DT model. The TID and total density function of the

pulse events modified by the first DT and their Laplace
transforms are well established and are listed in Table 1
[1,2,9,12-14,38]. Fig. 2 shows the shape of the TID and
total density functions in Table 1.

The effect of an NE DT (the second DT in Fig. 1) for
a given arbitrary input distribution of pulse intervals is
described by the master equation in several equivalent
forms as follows [1,9,10,14,33]:

The same equation can also be used to verify NE
1 f (t) for

the Poisson input only if the subscript 2’s and 1’s are
changed to 1’s and 0’s, respectively, and by consulting
the corresponding quantities in Table 1.

The TID function for the E-NE DTs has been derived
by many authors and is well established [33,36,43]. It is
simply the E

1 f [t-(τ2–τ1)], which is equal to the E
1 f (t)

translated by a magnitude of τ2–τ1 [33]. As shown in Table
1, the TID of the Poisson process modified by a single
NE DT has a similar translation feature, such that its TID
is given by NE

1 f (t) = U(t-τ1)ρexp[-ρ(t-τ1)] = 0 f (t-τ1). The
common property according to which the modified TID
function is given by the translated one of the input TID
of each case, 0 f (t-τ1) and E

1 f [t-(τ2–τ1)] respectively, is
due to the fact that the corresponding total density D(t) of
their input is constant in the time region after the DT of
the preceding stage. This can be proven using the master
equation (3), which is applied for an NE-type DT of
magnitude τN, and by assuming the input’s total density,
D(t), of the form µU(t-τ), i.e. a constant µ after time τ (τ
≥ 0). The input total density indicates in general that its
TID function is of the form, U(t-τ) f (t). No incoming
density D(t) in time t < τ requires the condition τN > τ for
the statistics to be modified (no masking effect). The

Fig. 1. A Schematic Block Diagram of the Two DTs in Series. τ2 : DT of NE-type, τ1 : DT of Either E- or NE-type. TID: Time
Interval Density Distribution.

(1)

(2)

(3)



subscripts indicating the positions are no longer relevant
because Eq. (3) is generally valid for an arbitrary input.
Hence, the event TID, m f (t), which is modified from the
input TID, f (t), is given by the following:

Using the Laplace transform, L{µU(t-k); s} = µexp(-ks)/s
(k≥0) [42], the Laplace transformed functions in Eq. (4)
can be obtained as follows:

where Eq. (2) is used in the second line. Using the Laplace
transform, L{U(t-k) f (t-k); s}=exp(-ks) f * (s) [42], the
inverse transform of Eq. (5) gives m f (t) = U[t-(τN–τ)] f
[t-(τN–τ)] = U(t-τN) f [t-(τN–τ)]. The TID of the Poisson
process modified by a single NE DT is verified for NE

1 f
(t) = 0 f (t-τ1) by letting τN=τ1 and τ=0. The case of E-NE
is also verified by letting τN=τ2 and τ=τ1.

The TID function and total density for the NE-E DTs
were derived in a previous study [40]. The total density,
NE-E

2D(t), is given by the following:

This is simply the input total density NE
1D(t) translated by

the magnitude of τ2–τ1 and modified by a factor of exp(-
ρτ2+ρτ1). Similarly the total density E

1D(t) = U(t-τ1)ρexp(-
ρτ1) is the Poisson total density ρU(t) translated by τ1 and
modified by a factor of exp(-ρτ1). This is a general feature
arising for an E-type DT, whenever the input TID function,
f (t), is of the form U(t-k)ae–bt (a>0, b,k≥0). Again, no
incoming density f (t) in time t < k requires the condition
τE > k for the statistics to be modified. Using the master
equation for E-type DT with magnitude τE, the total density,
mD(t), modified from the input total density, D(t), can be
given by the following [1,40]:
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Fig. 2. (Color Online) The Event TIDs, Total Density
Functions for the Poisson Process (Top), and the Processes

Modified by an NE DT (Middle) or an E DT (Bottom) for the
Case of ρτ1 = 1.0.
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(6)
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The Laplace transformed functions in Eq. (7) are given by

where the Laplace transforms, f *(s) = L{U(t-k)ae–bt ;
s}=ae–(s+b)k/(s+b), and L{U(t-τE) f (t) ; s} = ae–(s+b)τE /(s+b),
were obtained by consulting the table [42]. Hence, the
inverse transform gives

The total density of the Poisson process modified by the
series of NE-E DTs is verified by letting τE=τ2, k=τ1,
a=ρexp(ρτ1), and b=ρ in Eq. (9), which proves the relation
in Eq. (6). Similarly, the total density of the Poisson process
modified by an E DT of magnitude τ1, is also verified by
letting τE=τ1, k=0, a=b=ρ in Eq. (9).

2.2  The Counting Statistics
Since the time origin of the start, in an ordinary process

of counting, is taken with a pulse arriving at the output,
the TID function f1(t) for the first event is obviously the
TID function f (t). In an equilibrium process, the time origin
of counting is taken at random. Hence, the TID function
for the first event, g1(t), is obtained from its relation to the
TID function f (t) [14,17]. A previous study [40] showed
that obtaining an explicit form of the g1(t) function can
be avoided because all the moments of the counting that

are relevant to the equilibrium process can be obtained
from the TID function, f (t), and the total density function,
D(t), using Laplace transformation methods. In addition,
the probability, Wk(t), of obtaining exactly k counts within
time t need not be listed. These quantities, in the cases of
two DTs in series, take not only complicated forms but
require complicated mathematics to obtain the mean values
and variances. Alternatively and exclusively, the Laplace
transformed quantities and their inversions are used with
algebra to rearrange the terms. The expected number of
counts E(k,t) in the time interval (0, t) can be given by the
following:

for an ordinary process. For an equilibrium process, an
exact, general and simple relation is already known as
[14,17]:

where the second equalities are based on the Elmore
theorem [44]. An alternative method exists to obtain the
equilibrium mean count rate µ without addressing it to the
TID modified by the relevant DT. For a counting process
modified by an NE-type DT of magnitude τ2, the mean
count rate µ2 can be obtained using a simple equation in
terms of the quantities at position-1, such as [1,45]

Table 1. The Event TIDs, Total Density Functions and Their Laplace Transforms in the s-domain for the Poisson Process, and the
Processes Modified by an NE DT or an E DT. (See Fig. 1 for Diagram.)

Position

Note) Jt is the Largest Integer Below t/τ1, and is abbreviated as [[t/τ1]].

0

1

1

Event TID and Total density functions Laplace transforms

(10)

(11)

(9)

(8)

(12)



292 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.43  NO.3  JUNE 2011

H. D. CHOI Counting Statistics Modified by Two Dead Times in Series

where the µ1 is the mean count rate and the 1D(t) is the
total density at position-1. When the counting process is
modified by an E-type DT with magnitude τ2, the mean
count rate µ2 can be given by the following equation
[1,14,36]:

where the 1 f (t) is the TID function at position-1. The
integration in Eq. (13) corresponds to the probability of
the incoming counts lost by the E-type DT [14,36]. Eqs.
(12) and (13) are also useful for cross checking the results
obtained by Eq. (11).

Work on the shifted (free counter) process is to be
found in the literature [2,9,11]. An explicit definition of
the free counter process is that the time origin of counting
is the immediate moment after the dead period [15]. For
an NE-type DT, the dead period is fixed in magnitude and
hence the time origin is conceptually simple to consider.
For an E-type DT, the dead period can be extended by
any incoming pulse and the immediate moment after the
dead period is a random variable. Two studies have shown
that the TID function of the first event, h1(t), in the shifted
process is equal to the original Poisson distribution, which
is given by h1(t) = 1 f (t)|τ =0 = 0 f (t) for a single DT of either
type, NE or E [46,47]. When there are two DTs in the
series DTs, it has also been shown that the TID function
for the first event, h1(t), is equal to the original Poisson
distribution, which is given by h1(t) = 2 f (t)|τ1=τ2=0 = 0 f (t)
[40]. Hence, the expected number of counts E(k,t) can be
obtained by the following [40]:

for the shifted process.
By avoiding the complicated algebra involved when

using the quantities g1(t) and Wk(t), the variance V(k,t) of
the number of counts k within the counting interval (0, t)
can be expressed for all three processes in integral form
[12,17,40]:

where E(k,t) is the expected number (or mean number) of
counts in the corresponding process of the time origin.
For the equilibrium process, Eq. (15) can be reduced
further to:

where µ is the equilibrium mean count rate given in Eq.
(11) [12,17,40]. The integrations of the exact variances

for the ordinary and shifted processes, which are given
by Eq. (15), become too complicated in analytic terms
and are left out for numerical integration, which is simpler
and can be performed as accurately as required. Asymptotic
expressions for the mean counts and variance are valid in
the limit of t/τ → ∞, whereas they are approximately valid
for counting times ≥ ~10τ2, which is the range of value
typically taken in most counting measurements. Therefore,
the asymptotic forms are mostly convenient and useful.
They are derived using the known relations in terms of
the r-th moments, mr(t), of the time interval and by the
Elmore theorem [44,47].

Since the mathematical proofs of the derived
formulae are lengthy and less interesting for applications,
they were omitted and only the results are listed in the
Appendices. The statistics for the asymptotic mean and
variance of the counts in the counting time (0, t) are
listed in the Appendices for each of the three counting
origins (ordinary, equilibrium and shifted processes).
Most of the abbreviations in the formulae are for
convenience the same as those used in previous studies
[14,15,40], and are listed in the Appendix.

3. FEATURES OF STATISTICS

3.1  E-NE Series Dead Time
Figure 3 shows the TID calculated using Eq. (A.4) and

the data points produced by the Monte Carlo simulation.
It would only be redundant to show that the theoretical
TIDs are consistent with the Monte Carlo simulation results.
The case τ1/τ2 = 1 can be taken as a limiting case of Eq.
(A.4), and the corresponding TID is the same as the TID
E

1 f (t) given in Table 1. The TID function for E-NE DTs
has the feature that its non-zero magnitude begins from t
= τ2; it also has a flat interval in τ2 ≤ t ≤ τ2+τ1. As the τ1/τ2

ratio becomes zero, the effect of the first DT decreases,
and the TID reduces to the shape of NE

1 f (t) with a DT
magnitude of τ2. Figure 4 shows the distortion of the
asymptotic mean count rates, R1 and R2, which were
observed at the two locations indicated in Fig. 1. Owing
to the second DT, the count rate R2 is degraded appreciably
around the Poisson rates ρ ~ 1/τ1, whereas the magnitude
of degradation is small when the magnitudes of both DTs
are closer to each other.

The equilibrium mean count rate, Eq. (A.12), was
derived long ago for E-NE DTs [14,36]. In this study, the
full statistics for the three counting processes are obtained,
including the exact and asymptotic variances of counting.
In Fig. 5, the variance-to-mean ratio, σk

2(t)/µent, given in
Eqs. (A.12)-(A.13), reveals the distortion in the increasing
counting time t for an equilibrium process. The dashed
lines in the figure are the asymptotic ratios calculated by
Eqs. (A.12) and (A.14). It is well known that the variance-
to-mean ratio of the Poisson input distribution is 1.0
independent of the rate, ρ, and the counting time, t. The

(13)

(16)

(15)

(14)



modified variance-to-mean ratio by the E-NE series DT
model is always less than one, and the ratio generally
decreases with increasing counting time. For a counting
time t ≥ ~10τ2, the difference between the exact variance
and the asymptotic one becomes smaller. The computation
of the exact variance given by Eq. (A.13) became time-
consuming and showed numerical instability for a larger
counting time t. The asymptotic variance, which is given
in Eq. (A.14), is more useful for comparing with the
experimental data for which the counting time t is typically

much larger than 10τ2. The magnitude of the asymptotic
variance-to-mean ratio depends on the Poisson input rate,
in accordance with the pattern shown in Fig. 6.

A recent experimental application of the variance-to-
mean ratio can be found in the literature [30,31], in works
that examined the subcriticality of a reactor core. Here
the variance-to-mean ratios are typically measured by
single channel neutron counting consisting of a neutron
detector, pre-amplifier, amplifier, discriminator and
counter. Through an argument known as the “Feynman α
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Fig. 3. (Color Online) TIDs for the E-NE Series DTs. The
Poisson Input Rate was ρ = 2×105 cps, and the Second DT was

τ2 = 10 µs. The Data Points were Produced by the Monte
Carlo Simulation.

Fig. 5. (Color Online) Exact Variance-to-mean Ratio σk
2(t)/µent

for the E-NE Series DTs vs. the Counting Time t Under
Equilibrium Counting and for Several Poisson Input Rates ρ
(Continuous Line). The first DT, τ1 = 3 µs, and the Second

DT, τ2 = 10 µs, were Fixed. The Asymptotic Variance-to-mean
Ratios, which were Based on Eq. (A.14), are Shown in the

Dashed Lines.

Fig. 6. (Color Online) The Variance-to-mean Ratio σk
2/µent for

E-NE Series DT Under an Asymptotic Equilibrium Counting.
The Poisson Input Rate ρ was Varied, whereas the Second DT,

τ2 = 10 µs, and Counting Time, t = 1 s, were Fixed for an
Asymptotic Limit.

Fig. 4. (Color Online) Mean Count Rate R1 (Dashed Line) after
the First DT of the E-type and the Rate R2 (Continuous Line)
after the Second DT of the NE-type in a Series of E-NE DTs.
The Poisson Input Rate ρ was Varied, while the Second DT

was τ2 = 10 µs. The Cases of τ1 = 0 µs and 10 µs are Equivalent
to Those of a Single DT of the NE- and E-type, Respectively.



method”, the variance-to-mean ratio of neutron counts in
a reactor core is correlated with the prompt neutron
decay constant (α) and shutdown reactivity margin [29].
In the experimentally measured variance-to-mean ratios,
the deviation from Poisson statistics is affected by the
dead time behavior of the detection system, for which the
true mean count rate and variance-to-mean ratio are
normally estimated by modeling the DT behavior of the
detection system. In references [31,48], the measured
TID of a single channel neutron counting system had the
shape of the typical E-NE DT model, whereas another
study in ref. [30], which used a similar counting system,
assumed that the DT behavior could be modeled for the
NE-E DTs. Both studies need to describe the observed
variance-to-mean ratio as the input neutron rate increases.
Therefore, the new formulae derived in the present and
the previous study [40] are immediately applicable to the
experimental data based on the Feynman α method.

3.2  NE-NE Series Dead Times
Determination of the mean count rate for the NE-NE

series DTs was made long ago by Ruark and Brammer,
even though they actually derived that rate for the NE-E
series DT model [6]. A correct formula of the equilibrium
mean count rate for the NE-NE series DTs was later
derived by Jost [1]. After considering a printing error, the
equilibrium mean count rate obtained by Jost was confirmed
to be equal to the µNN in Eq. (A.3). Müller also considered
the problem of the NE-NE series DTs, giving an expression
for the TID and equilibrium mean count rate [14,38].
Müller’s derivation led to a complicated expression for
the mean count rate, due to the different approach used to
obtain the result. After some work, Müller’s formula, Eq.
(52) in ref. [14], was found to be equivalent to Jost’s [1]
and Eq. (A.3) in this study. The TID function  2 f (t),
obtained in this study, is simple, and is given in Eq.
(B.1). It was first derived by De Lotto et al. [36] and later
by Müller in an equivalent but different form [38]. An
expression for 2 f (t) was previously known, whereas the
total density 2D(t) given in Eq. (B.2) was newly obtained
in this study. Fig. 7 compares the TIDs, 2 f (t), with the
Monte Carlo simulations. The comparison confirms the
validity of the TIDs, 2 f (t), listed in this study. The shapes
of the TIDs, 2 f (t), shown in Fig. 7, indicate several notable
features. The TIDs for τ1 = 0 and τ1 = τ2 are equal to that
of a single DT of the NE-type. All the TIDs show the decay
of the characteristic form, exp(-ρt), for time t > τ2+τ1. For
high J, e.g. τ1 = 2 µs (J=5), the time region of τ2 < t < τ2+τ1,
has an almost flat value for 2 f (t). Here J is the largest
integer below the ratio τ2/τ1, denoted by [[τ2/τ1]]. The cases
of τ1 = 4 and 5 µs show a curved region in τ2 < t < τ2+τ1.
For J = 1 (τ1 = 6, 8 µs), there is an additional exponential
form in the region τ2 < t < 2τ1. In contrast to the TID, 2 f (t),
the total density function, 2D(t), which is given in Eq.
(B.2), has a complicated form due to Brq’s terms, defined

by Eq. (B.5). Fortunately, the definition of Brq’s is similar
to that of Arq’s, which were discussed in a previous paper
regarding the E-E series DTs [40]. In the simplest case of
J = 1 (τ1 < τ2 ≤ 2τ1), only one term q=r for a given r is
sufficient, such as Brq = Brr = –Q r

1
= exp[-rρ(τ2-τ1)], to account

for the sum over q. For J = 2 (2τ1 < τ2 ≤ 3τ1), there are
(r+1) terms for the index q running from r to 2r, but they
are still given simply as Brq = –Q 1

2r-q –Q 2
q-r r!/(q-r)!(2r-q)!,

which can be calculated easily. For a larger J or r, they
can be calculated using the recurrence relation in Eq.
(B.6). The expected number of counts, E(k,t), in a time
duration (0, t) and its associated variance, V(k,t), in exact
or asymptotic form, were newly derived in this study.
These were calculated using short computer code with a
routine for calculating Brq.

Figure 8 shows the asymptotic mean count rates, R1 and
R2, which are observed at the two locations indicated in
Fig. 1. The count rate R1 approaches the constant count
rate 1/τ1 as the input rate ρ is increased. The count rate R2

was degraded further due to the second DT but it was not
monotonic with increasing input rate ρ. The mean counting
rate of the NE-NE series DTs for the equilibrium process
is µNN = ρλ1λNN, as shown in Eq. (A.3). Here ρλ1 = ρ/(1+ρτ1)
is the mean counting rate (R1) for the Poisson input modified
by a single DT, τ1, of the NE-type. Hence, the factor λNN

is the transmission factor T2 of the second NE DT for a
given input rate, ρλ1. The transmission factor T2 is given
by the following:
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Fig. 7. (Color Online) TIDs Calculated for a Series of NE-NE
DTs. The Input Poisson Rate was ρ = 2×105 cps, and the

second DT was τ2 = 10 µs. The Data Points were Produced by
the Monte Carlo Simulation.

(17)



In the limit of large ρτ2, the transmission factor, T2, is
limited monotonically to (1+J)–1, which can be seen in
Eq. (17), because all the  –Qn values are diminished. Fig. 9
presents the transmission factor T2 at various τ1/τ2 ratios
as a function of the dimensionless rate ρτ2. For any τ1-τ2

combination giving the same J, the transmission factor T2

is limited to the same value (1+J)–1. Fig. 10 shows the
variance-to-mean ratio, σk

2(t)/µNNt for an equilibrium
process, which is given in Eqs. (B.14)-(B.15). The variance-
to-mean ratio was found to deviate from that of the Poisson
statistics and to decrease in general with increasing counting
time t. In the cases with a large ρτ2, e.g. lines for ρ = 1

and 8 Mcps, shown in Fig. 10, an oscillating feature can
be observed for t > τ2, which is a characteristic feature of
the variance modified by the NE-type DT [15]. In Fig. 11,
the variance-to-mean ratio σk

2/µNNt, which is given in Eq.
(B.16) and Eqs. (B.7)-(B.9), is shown for an asymptotic
equilibrium process (t = 1 s) and for several τ1’s. This
illustrates the effect of the second DT of NE-type, which
causes a variation from the simple monotonic decrease in
the case of a single NE DT.

3.3  Mean Counting Rate Modified by Three Dead
Times in Series

Counting statistics modified by three DTs in series has
never been examined before. The required full set of TID
functions and total densities for the two DTs in series was
not known previously. Moreover, the mathematics involved
in some case was too complicated to make it a topic of
interest. Although the counting statistics for the two series
DTs are known through our work, the challenging topic
of counting statistics modified by three DTs in series is
difficult to solve because the mathematics is even more
complicated. The throughput formula for equilibrium
counting can be simply derived using the known TIDs
and total densities for the two DTs in series.

Eqs. (12) and (13) are generally valid for any position
in the counting circuit. When they are applied to the
counting rate at position-1, of which DT modifies the
original Poisson process, the integration is simple and the
familiar counting rates can be obtained for the distortion
by an E- or an NE-type DT [1,9,14]. The equilibrium
mean counting rates µen and µNN, given in Eqs. (A.2)-(A.3),
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Fig. 8. (Color Online) Asymptotic Mean Count Rate R1

(Dashed Line) after the First DT and the Rate R2 (Continuous
Line) after the Second DT in a Series of NE-NE DTs. The

Poisson Input Rate ρ was varied, whereas the second DT was
taken as τ2 = 10 µs.

Fig. 9. (Color Online) Transmission factor T2 = λNN calculated
by Eq. (17) as a function of ρτ2.

Fig. 10. (Color Online) Exact Variance-to-mean Ratio σk
2(t)/µNNt

for the NE-NE Series DTs vs. the Counting Time t, Under an
Equilibrium Counting and for Several Poisson Input Rates ρ.
The First DT, τ1 = 3 µs, and the Second DT, τ2 = 10 µs, were
Fixed. The Asymptotic Variance-to-mean Ratios, which were

Based on Eq. (B.16), are Shown in the Dashed Lines.



can be confirmed by applying Eqs. (12)-(13) to the counting
rates at position-2 [1,14,36]. Similarly, the equilibrium
mean counting rates µne and µee obtained in the previous
works can also be verified [14,40]. Eqs. (12) and (13) can
also be used to obtain the equilibrium counting rates of
the Poisson process modified by three DTs in series. The
required TID function 2 f (t) and total density 2D(t) are
listed in the appendices of the present study and ref. [40].
By further abbreviating the notation NE to N to avoid
confusion, there are 8 possible cases - ENE, ENN, NNE,
NNN, NEE, NEN, EEE, and EEN, from a combination
of three DTs in series. To simplify the integrations in
Eqs. (12) and (13), only the results are listed in Appendix
C. A practical application of the derived counting rates
remains to be examined.

4. CONCLUSION

Counting statistics modified by a series combination
of two DTs was fully developed and discussed for the
interval density, total density, expected number of counts
and variance in a given time interval (0, t); asymptotic
expressions for the ordinary, equilibrium and shifted
processes were also determined. The cases studied are a
combination of the E-NE (extended-nonextended) DTs
and the NE-NE (nonextended-nonextended) DTs. The
other two cases of combinations NE-E and E-E DTs
were dealt with in a previous study. Whenever an input
pulse sequence with a constant total event density after a
period of no events is modified by an NE-type dead time,
the modified event TID is the shifted one of the input
TID. For modification by the E-type dead time, in which

the input TID has an exponential shape, the shape of the
modified total density is shifted from the input total
density. The equilibrium mean counting rates for the 8
cases modified by the three DTs in series - ENE, ENN,
NNE, NNN, NEE, NEN, EEE, and EEN were briefly
derived. A possible practical application of the derived
formulae is discussed.

APPENDIX
The Appendices list the derived formulae. Several

abbreviations were used to simplify the equations, most
of which were taken from Müller [14,15] and from a
preceding study [40]. The shifted Poisson probability
PS(j,zk) is given as: PS ( j,zk) (z j

k / j!)exp(–zk) with the
convention of PS(j=0,zk=0)=1. In addition, a set of
characteristic quantities relevant to the NE-NE series DT
is defined as:

for integers n ≤ J. This definition is similar to the quantity
Qn defined for the case of the extended-extended (E-E)
series DT [40].

A. E-NE Series Dead Time
The density functions are:
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Fig. 11. (Color Online) Variance-to-mean Ratio σk
2/µNNt for

the NE-NE Series DTs Under an Asymptotic Equilibrium
Counting. The Poisson Input Rate ρ was Varied, whereas the

Second DT, τ2 = 10 µs, and Counting Time, t = 1 s, were
Fixed for an Asymptotic Limit.

(A.1)

(A.4)

(A.5)

(A.2)

(A.3)



and:

where the binomial coefficient is      =k!/r!(k–r)! with the 

convention of      1.

A.1. Ordinary Process
Counting statistics (exact):

where k̂(t) is given in Eq. (A.8). The numerical convolution
of 2D(t) and k̂(t) is easier to obtain because the resulting
expression for the variance of counts σk

2(t) in Eq. (A.9) is
long and complicated.

Asymptotic expressions:

A.2. Equilibrium Process
Counting statistics (exact):

Asymptotic expression:

A.3. Shifted Process
Counting statistics (exact):

where k̂(t) is given in Eq. (A.15). We suggest a numerical
convolution of 2D(t) and k̂(t).

Asymptotic expressions:

B. NE-NE Series Dead Times
The density function is obtained from the integration

of Eq. (3):

The transformed density functions can be expressed as:

where the Brq’s are given as:

with the sum over all possible sets {rn} under the conditions:
q = n

∑nrn and r = n
∑rn. It is easily seen that B00 = 1. Instead

of finding all possible sets, {rn}, and calculating the
multinomial coefficients in Eq. (B.5), the following
recurrence relation makes it easier to generate Brq

successively for increasing r starting from r = 1 and using
B00 = 1. Brq can be expressed as [40]:

(A.16)
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(A.6)

(A.17)

(B.1)

(A.18)

(A.7)

(A.8)

(B.2)

(A.9)

(A.10)

(A.11)

(A.12)

(A.14)

(A.15)

(A.13)

(B.3)

(B.4)

(B.5)

(B.6)



where n1 = max[1, q – (r–1)J], n2 = min[q – r + 1, J] and
q running from r to rJ for r = 1, ... , k.

The asymptotic variance of the counts is obtained in
terms of the r-th moments of the time interval mr(t) and
by the Elmore theorem [44,47]. The time independent
parts in the final expression for the variances are too long
to list, and are listed separately in terms of the 1st, 2nd and
the 3rd moments, m1, m2, m3, of the TID function, 2 f (t),
given in Eq. (B.1). The moments are expressed as follows:

B.1. Ordinary Process
Counting statistics (exact):

where k̂(t) is given in Eq. (B.10). Since the resulting
expression for the variance of counts σk

2(t) in Eq. (B.11)
contains multiple sums, a numerical convolution of 2D(t)
and k̂(t) is suggested.

Asymptotic expressions:

B.2. Equilibrium Process
Counting statistics (exact):

Asymptotic expression:

B.3. Shifted Process
Counting statistics (exact):

where k̂(t) is given in Eq. (B.17). We suggest a numerical
convolution of 2D(t) and k̂(t).

Asymptotic expressions:

C. Mean Count Rates Modified by Three Dead Times
in Series
The definitions of the quantities –Qn in Eq. (A.1) and

Qn in Eq. (A.3) of the previous study [40] can be
generalized by adding parentheses to accommodate the
general arguments for u and v as follows:

Whenever there are no arguments in  
–
Qn or Qn, the arguments
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(B.7)

(B.8)

(B.10)

(B.17)

(B.19)

(B.11)

(C.1)

(B.14)

(B.18)

(B.15)

(B.20)

(B.16)

(B.12)

(B.13)

(B.9)



u = x2 and v = x1 are assumed in order to maintain
consistency with the definitions in the present and
previous studies [40]. In addition to the abbreviations
defined in Eqs. (A.1)-(A.3), several new abbreviations
are added, as follows:

C.1. Extended-Nonextended-Extended (ENE) Series
DTs

C.2. Extended-Nonextended-Nonextended (ENN)
Series DTs

C.3. Nonextended-Nonextended-Extended (NNE)
Series DTs

C.4. Nonextended-Nonextended-Nonextended
(NNN) Series DTs

C.5. Nonextended-Extended-Extended (NEE) Series DTs

C.6. Nonextended-Extended-Nonextended (NEN)
Series DTs

C.7. Extended-Extended-Extended (EEE) Series DTs

C.8. Extended-Extended-Nonextended (EEN) Series
DTs
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